Metamath Proof Explorer


Theorem clmsscn

Description: The scalar ring of a subcomplex module is a subset of the complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F=ScalarW
clmsub.k K=BaseF
Assertion clmsscn WCModK

Proof

Step Hyp Ref Expression
1 clm0.f F=ScalarW
2 clmsub.k K=BaseF
3 1 2 clmsubrg WCModKSubRingfld
4 cnfldbas =Basefld
5 4 subrgss KSubRingfldK
6 3 5 syl WCModK