Metamath Proof Explorer


Theorem clmsub

Description: Subtraction in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F = Scalar W
clmsub.k K = Base F
Assertion clmsub W CMod A K B K A B = A - F B

Proof

Step Hyp Ref Expression
1 clm0.f F = Scalar W
2 clmsub.k K = Base F
3 1 2 clmsubrg W CMod K SubRing fld
4 subrgsubg K SubRing fld K SubGrp fld
5 3 4 syl W CMod K SubGrp fld
6 cnfldsub = - fld
7 eqid fld 𝑠 K = fld 𝑠 K
8 eqid - fld 𝑠 K = - fld 𝑠 K
9 6 7 8 subgsub K SubGrp fld A K B K A B = A - fld 𝑠 K B
10 5 9 syl3an1 W CMod A K B K A B = A - fld 𝑠 K B
11 1 2 clmsca W CMod F = fld 𝑠 K
12 11 fveq2d W CMod - F = - fld 𝑠 K
13 12 3ad2ant1 W CMod A K B K - F = - fld 𝑠 K
14 13 oveqd W CMod A K B K A - F B = A - fld 𝑠 K B
15 10 14 eqtr4d W CMod A K B K A B = A - F B