Metamath Proof Explorer


Theorem clmneg

Description: Negation in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F=ScalarW
clmsub.k K=BaseF
Assertion clmneg WCModAKA=invgFA

Proof

Step Hyp Ref Expression
1 clm0.f F=ScalarW
2 clmsub.k K=BaseF
3 1 2 clmsca WCModF=fld𝑠K
4 3 fveq2d WCModinvgF=invgfld𝑠K
5 4 adantr WCModAKinvgF=invgfld𝑠K
6 5 fveq1d WCModAKinvgFA=invgfld𝑠KA
7 1 2 clmsubrg WCModKSubRingfld
8 subrgsubg KSubRingfldKSubGrpfld
9 7 8 syl WCModKSubGrpfld
10 eqid fld𝑠K=fld𝑠K
11 eqid invgfld=invgfld
12 eqid invgfld𝑠K=invgfld𝑠K
13 10 11 12 subginv KSubGrpfldAKinvgfldA=invgfld𝑠KA
14 9 13 sylan WCModAKinvgfldA=invgfld𝑠KA
15 1 2 clmsscn WCModK
16 15 sselda WCModAKA
17 cnfldneg AinvgfldA=A
18 16 17 syl WCModAKinvgfldA=A
19 6 14 18 3eqtr2rd WCModAKA=invgFA