Description: Negation in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clm0.f | |
|
clmsub.k | |
||
Assertion | clmneg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clm0.f | |
|
2 | clmsub.k | |
|
3 | 1 2 | clmsca | |
4 | 3 | fveq2d | |
5 | 4 | adantr | |
6 | 5 | fveq1d | |
7 | 1 2 | clmsubrg | |
8 | subrgsubg | |
|
9 | 7 8 | syl | |
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 10 11 12 | subginv | |
14 | 9 13 | sylan | |
15 | 1 2 | clmsscn | |
16 | 15 | sselda | |
17 | cnfldneg | |
|
18 | 16 17 | syl | |
19 | 6 14 18 | 3eqtr2rd | |