Database BASIC TOPOLOGY Metric subcomplex vector spaces Subcomplex modules clmsubrg  
				
		 
		
			
		 
		Description:   The base set of the ring of scalars of a subcomplex module is the base
       set of a subring of the field of complex numbers.  (Contributed by Mario
       Carneiro , 16-Oct-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						isclm.f   ⊢   F  =   Scalar  ⁡  W        
					 
					
						isclm.k   ⊢   K  =  Base  F      
					 
				
					Assertion 
					clmsubrg    ⊢   W  ∈  CMod    →   K  ∈   SubRing  ⁡   ℂ  fld            
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							isclm.f  ⊢   F  =   Scalar  ⁡  W        
						
							2 
								
							 
							isclm.k  ⊢   K  =  Base  F      
						
							3 
								1  2 
							 
							isclm   ⊢   W  ∈  CMod    ↔    W  ∈  LMod    ∧   F  =   ℂ  fld    ↾  𝑠 K   ∧   K  ∈   SubRing  ⁡   ℂ  fld             
						
							4 
								3 
							 
							simp3bi   ⊢   W  ∈  CMod    →   K  ∈   SubRing  ⁡   ℂ  fld