Metamath Proof Explorer


Theorem clmlmod

Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion clmlmod WCModWLMod

Proof

Step Hyp Ref Expression
1 eqid ScalarW=ScalarW
2 eqid BaseScalarW=BaseScalarW
3 1 2 isclm WCModWLModScalarW=fld𝑠BaseScalarWBaseScalarWSubRingfld
4 3 simp1bi WCModWLMod