| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clm0.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | clmsub.k |  |-  K = ( Base ` F ) | 
						
							| 3 | 1 2 | clmsubrg |  |-  ( W e. CMod -> K e. ( SubRing ` CCfld ) ) | 
						
							| 4 |  | subrgsubg |  |-  ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( W e. CMod -> K e. ( SubGrp ` CCfld ) ) | 
						
							| 6 |  | cnfldsub |  |-  - = ( -g ` CCfld ) | 
						
							| 7 |  | eqid |  |-  ( CCfld |`s K ) = ( CCfld |`s K ) | 
						
							| 8 |  | eqid |  |-  ( -g ` ( CCfld |`s K ) ) = ( -g ` ( CCfld |`s K ) ) | 
						
							| 9 | 6 7 8 | subgsub |  |-  ( ( K e. ( SubGrp ` CCfld ) /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` ( CCfld |`s K ) ) B ) ) | 
						
							| 10 | 5 9 | syl3an1 |  |-  ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` ( CCfld |`s K ) ) B ) ) | 
						
							| 11 | 1 2 | clmsca |  |-  ( W e. CMod -> F = ( CCfld |`s K ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( W e. CMod -> ( -g ` F ) = ( -g ` ( CCfld |`s K ) ) ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( -g ` F ) = ( -g ` ( CCfld |`s K ) ) ) | 
						
							| 14 | 13 | oveqd |  |-  ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A ( -g ` F ) B ) = ( A ( -g ` ( CCfld |`s K ) ) B ) ) | 
						
							| 15 | 10 14 | eqtr4d |  |-  ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` F ) B ) ) |