| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clm0.f |
|- F = ( Scalar ` W ) |
| 2 |
|
clmsub.k |
|- K = ( Base ` F ) |
| 3 |
1 2
|
clmsubrg |
|- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
| 4 |
|
subrgsubg |
|- ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) ) |
| 5 |
3 4
|
syl |
|- ( W e. CMod -> K e. ( SubGrp ` CCfld ) ) |
| 6 |
|
cnfldsub |
|- - = ( -g ` CCfld ) |
| 7 |
|
eqid |
|- ( CCfld |`s K ) = ( CCfld |`s K ) |
| 8 |
|
eqid |
|- ( -g ` ( CCfld |`s K ) ) = ( -g ` ( CCfld |`s K ) ) |
| 9 |
6 7 8
|
subgsub |
|- ( ( K e. ( SubGrp ` CCfld ) /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` ( CCfld |`s K ) ) B ) ) |
| 10 |
5 9
|
syl3an1 |
|- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` ( CCfld |`s K ) ) B ) ) |
| 11 |
1 2
|
clmsca |
|- ( W e. CMod -> F = ( CCfld |`s K ) ) |
| 12 |
11
|
fveq2d |
|- ( W e. CMod -> ( -g ` F ) = ( -g ` ( CCfld |`s K ) ) ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( -g ` F ) = ( -g ` ( CCfld |`s K ) ) ) |
| 14 |
13
|
oveqd |
|- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A ( -g ` F ) B ) = ( A ( -g ` ( CCfld |`s K ) ) B ) ) |
| 15 |
10 14
|
eqtr4d |
|- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` F ) B ) ) |