| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
| 2 |
|
tcphcph.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
tcphcph.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
tcphcph.1 |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
| 5 |
|
tcphcph.2 |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 6 |
|
tcphcph.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 7 |
|
tcphcph.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ 𝐾 ) |
| 8 |
|
tcphcph.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 9 |
1
|
tcphphl |
⊢ ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil ) |
| 10 |
4 9
|
sylib |
⊢ ( 𝜑 → 𝐺 ∈ PreHil ) |
| 11 |
1 2 6
|
tcphval |
⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| 12 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 14 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 15 |
4 14
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 16 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 18 |
1 2 3 4 5 6
|
tcphcphlem3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 , 𝑥 ) ∈ ℝ ) |
| 19 |
18 8
|
resqrtcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ℝ ) |
| 20 |
19
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ℝ ) |
| 21 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝑥 , 𝑥 ) = ( 𝑦 , 𝑦 ) ) |
| 22 |
21
|
anidms |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 , 𝑥 ) = ( 𝑦 , 𝑦 ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( 𝑦 , 𝑦 ) ) ) |
| 24 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) |
| 25 |
|
fvex |
⊢ ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ V |
| 26 |
23 24 25
|
fvmpt3i |
⊢ ( 𝑦 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) = ( √ ‘ ( 𝑦 , 𝑦 ) ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) = ( √ ‘ ( 𝑦 , 𝑦 ) ) ) |
| 28 |
27
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) = 0 ↔ ( √ ‘ ( 𝑦 , 𝑦 ) ) = 0 ) ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 30 |
|
phllvec |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec ) |
| 31 |
4 30
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 32 |
3
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 34 |
29 5 33
|
cphsubrglem |
⊢ ( 𝜑 → ( 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) = ( 𝐾 ∩ ℂ ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 35 |
34
|
simp2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( 𝐾 ∩ ℂ ) ) |
| 36 |
|
inss2 |
⊢ ( 𝐾 ∩ ℂ ) ⊆ ℂ |
| 37 |
35 36
|
eqsstrdi |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ⊆ ℂ ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( Base ‘ 𝐹 ) ⊆ ℂ ) |
| 39 |
3 6 2 29
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 , 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
| 40 |
39
|
3anidm23 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 , 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
| 41 |
4 40
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 , 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
| 42 |
38 41
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 , 𝑦 ) ∈ ℂ ) |
| 43 |
42
|
sqrtcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( √ ‘ ( 𝑦 , 𝑦 ) ) ∈ ℂ ) |
| 44 |
|
sqeq0 |
⊢ ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ∈ ℂ → ( ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ↑ 2 ) = 0 ↔ ( √ ‘ ( 𝑦 , 𝑦 ) ) = 0 ) ) |
| 45 |
43 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ↑ 2 ) = 0 ↔ ( √ ‘ ( 𝑦 , 𝑦 ) ) = 0 ) ) |
| 46 |
42
|
sqsqrtd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ↑ 2 ) = ( 𝑦 , 𝑦 ) ) |
| 47 |
1 2 3 4 5
|
phclm |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 48 |
3
|
clm0 |
⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ 𝐹 ) ) |
| 49 |
47 48
|
syl |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐹 ) ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → 0 = ( 0g ‘ 𝐹 ) ) |
| 51 |
46 50
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ↑ 2 ) = 0 ↔ ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) ) ) |
| 52 |
45 51
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( √ ‘ ( 𝑦 , 𝑦 ) ) = 0 ↔ ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) ) ) |
| 53 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
| 54 |
3 6 2 53 13
|
ipeq0 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) ↔ 𝑦 = ( 0g ‘ 𝑊 ) ) ) |
| 55 |
4 54
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) ↔ 𝑦 = ( 0g ‘ 𝑊 ) ) ) |
| 56 |
28 52 55
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) = 0 ↔ 𝑦 = ( 0g ‘ 𝑊 ) ) ) |
| 57 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑊 ∈ PreHil ) |
| 58 |
34
|
simp1d |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 60 |
|
3anass |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
| 61 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 62 |
61
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → 𝑥 ∈ ℂ ) |
| 63 |
62
|
sqrtcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ℂ ) |
| 64 |
7 63
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( ( √ ‘ 𝑥 ) ∈ 𝐾 ∧ ( √ ‘ 𝑥 ) ∈ ℂ ) ) |
| 65 |
64
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ( √ ‘ 𝑥 ) ∈ 𝐾 ∧ ( √ ‘ 𝑥 ) ∈ ℂ ) ) ) |
| 66 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↔ 𝑥 ∈ ( 𝐾 ∩ ℂ ) ) ) |
| 67 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
| 68 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐾 ∩ ℂ ) ↔ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℂ ) ) |
| 69 |
68
|
rbaib |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ∈ ( 𝐾 ∩ ℂ ) ↔ 𝑥 ∈ 𝐾 ) ) |
| 70 |
67 69
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ( 𝐾 ∩ ℂ ) ↔ 𝑥 ∈ 𝐾 ) ) |
| 71 |
66 70
|
sylan9bb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↔ 𝑥 ∈ 𝐾 ) ) |
| 72 |
71
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↔ 𝑥 ∈ 𝐾 ) ) |
| 73 |
72
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↔ 𝑥 ∈ 𝐾 ) ) ) |
| 74 |
73
|
pm5.32rd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) ) |
| 75 |
|
3anass |
⊢ ( ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
| 76 |
74 75
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
| 77 |
35
|
eleq2d |
⊢ ( 𝜑 → ( ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ↔ ( √ ‘ 𝑥 ) ∈ ( 𝐾 ∩ ℂ ) ) ) |
| 78 |
|
elin |
⊢ ( ( √ ‘ 𝑥 ) ∈ ( 𝐾 ∩ ℂ ) ↔ ( ( √ ‘ 𝑥 ) ∈ 𝐾 ∧ ( √ ‘ 𝑥 ) ∈ ℂ ) ) |
| 79 |
77 78
|
bitrdi |
⊢ ( 𝜑 → ( ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ↔ ( ( √ ‘ 𝑥 ) ∈ 𝐾 ∧ ( √ ‘ 𝑥 ) ∈ ℂ ) ) ) |
| 80 |
65 76 79
|
3imtr4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
| 81 |
60 80
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
| 82 |
81
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
| 83 |
82
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
| 84 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 85 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑉 ) |
| 86 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) |
| 87 |
1 2 3 57 59 6 83 84 29 12 85 86
|
tcphcphlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ≤ ( ( √ ‘ ( 𝑦 , 𝑦 ) ) + ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
| 88 |
2 12
|
grpsubcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 89 |
88
|
3expb |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 90 |
17 89
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 91 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∧ 𝑥 = ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑥 , 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) |
| 92 |
91
|
anidms |
⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) → ( 𝑥 , 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) |
| 93 |
92
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 94 |
93 24 25
|
fvmpt3i |
⊢ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) = ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 95 |
90 94
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) = ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 96 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑧 ) → ( 𝑥 , 𝑥 ) = ( 𝑧 , 𝑧 ) ) |
| 97 |
96
|
anidms |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 , 𝑥 ) = ( 𝑧 , 𝑧 ) ) |
| 98 |
97
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( 𝑧 , 𝑧 ) ) ) |
| 99 |
98 24 25
|
fvmpt3i |
⊢ ( 𝑧 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑧 ) = ( √ ‘ ( 𝑧 , 𝑧 ) ) ) |
| 100 |
26 99
|
oveqan12d |
⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) + ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑧 ) ) = ( ( √ ‘ ( 𝑦 , 𝑦 ) ) + ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
| 101 |
100
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) + ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑧 ) ) = ( ( √ ‘ ( 𝑦 , 𝑦 ) ) + ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
| 102 |
87 95 101
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ≤ ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) + ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑧 ) ) ) |
| 103 |
11 2 12 13 17 20 56 102
|
tngngpd |
⊢ ( 𝜑 → 𝐺 ∈ NrmGrp ) |
| 104 |
|
phllmod |
⊢ ( 𝐺 ∈ PreHil → 𝐺 ∈ LMod ) |
| 105 |
10 104
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ LMod ) |
| 106 |
|
cnnrg |
⊢ ℂfld ∈ NrmRing |
| 107 |
34
|
simp3d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) |
| 108 |
|
eqid |
⊢ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) |
| 109 |
108
|
subrgnrg |
⊢ ( ( ℂfld ∈ NrmRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) → ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∈ NrmRing ) |
| 110 |
106 107 109
|
sylancr |
⊢ ( 𝜑 → ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∈ NrmRing ) |
| 111 |
58 110
|
eqeltrd |
⊢ ( 𝜑 → 𝐹 ∈ NrmRing ) |
| 112 |
103 105 111
|
3jca |
⊢ ( 𝜑 → ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ) |
| 113 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → 𝑊 ∈ PreHil ) |
| 114 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 115 |
82
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
| 116 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 117 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 118 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝐹 ) ) |
| 119 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) |
| 120 |
1 2 3 113 114 6 115 116 29 117 118 119
|
tcphcphlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( √ ‘ ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( ( abs ‘ 𝑦 ) · ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
| 121 |
2 3 117 29
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 122 |
121
|
3expb |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 123 |
15 122
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 124 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
| 125 |
1 124 2 6
|
tcphnmval |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( √ ‘ ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 126 |
17 123 125
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( √ ‘ ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 127 |
114
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( norm ‘ 𝐹 ) = ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 128 |
127
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) = ( ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ‘ 𝑦 ) ) |
| 129 |
|
subrgsubg |
⊢ ( ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) → ( Base ‘ 𝐹 ) ∈ ( SubGrp ‘ ℂfld ) ) |
| 130 |
107 129
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ∈ ( SubGrp ‘ ℂfld ) ) |
| 131 |
|
cnfldnm |
⊢ abs = ( norm ‘ ℂfld ) |
| 132 |
|
eqid |
⊢ ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) = ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 133 |
108 131 132
|
subgnm2 |
⊢ ( ( ( Base ‘ 𝐹 ) ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ‘ 𝑦 ) = ( abs ‘ 𝑦 ) ) |
| 134 |
130 118 133
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ‘ 𝑦 ) = ( abs ‘ 𝑦 ) ) |
| 135 |
128 134
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ 𝑦 ) ) |
| 136 |
1 124 2 6
|
tcphnmval |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑧 ∈ 𝑉 ) → ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) = ( √ ‘ ( 𝑧 , 𝑧 ) ) ) |
| 137 |
17 119 136
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) = ( √ ‘ ( 𝑧 , 𝑧 ) ) ) |
| 138 |
135 137
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( abs ‘ 𝑦 ) · ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
| 139 |
120 126 138
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 140 |
139
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ 𝑉 ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 141 |
1 2
|
tcphbas |
⊢ 𝑉 = ( Base ‘ 𝐺 ) |
| 142 |
1 117
|
tcphvsca |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐺 ) |
| 143 |
1 3
|
tcphsca |
⊢ 𝐹 = ( Scalar ‘ 𝐺 ) |
| 144 |
|
eqid |
⊢ ( norm ‘ 𝐹 ) = ( norm ‘ 𝐹 ) |
| 145 |
141 124 142 143 29 144
|
isnlm |
⊢ ( 𝐺 ∈ NrmMod ↔ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ 𝑉 ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
| 146 |
112 140 145
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ NrmMod ) |
| 147 |
10 146 58
|
3jca |
⊢ ( 𝜑 → ( 𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 148 |
|
elin |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ( 0 [,) +∞ ) ) ) |
| 149 |
|
elrege0 |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 150 |
149
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
| 151 |
148 150
|
bitri |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
| 152 |
151 80
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
| 153 |
152
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
| 154 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
| 155 |
|
ffun |
⊢ ( √ : ℂ ⟶ ℂ → Fun √ ) |
| 156 |
154 155
|
ax-mp |
⊢ Fun √ |
| 157 |
|
inss1 |
⊢ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ⊆ ( Base ‘ 𝐹 ) |
| 158 |
157 37
|
sstrid |
⊢ ( 𝜑 → ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ⊆ ℂ ) |
| 159 |
154
|
fdmi |
⊢ dom √ = ℂ |
| 160 |
158 159
|
sseqtrrdi |
⊢ ( 𝜑 → ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ⊆ dom √ ) |
| 161 |
|
funimass4 |
⊢ ( ( Fun √ ∧ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ⊆ dom √ ) → ( ( √ “ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
| 162 |
156 160 161
|
sylancr |
⊢ ( 𝜑 → ( ( √ “ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
| 163 |
153 162
|
mpbird |
⊢ ( 𝜑 → ( √ “ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ 𝐹 ) ) |
| 164 |
43
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) : 𝑉 ⟶ ℂ ) |
| 165 |
1 2 6
|
tcphval |
⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) ) |
| 166 |
|
cnex |
⊢ ℂ ∈ V |
| 167 |
165 2 166
|
tngnm |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) : 𝑉 ⟶ ℂ ) → ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) = ( norm ‘ 𝐺 ) ) |
| 168 |
17 164 167
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) = ( norm ‘ 𝐺 ) ) |
| 169 |
168
|
eqcomd |
⊢ ( 𝜑 → ( norm ‘ 𝐺 ) = ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) ) |
| 170 |
1 6
|
tcphip |
⊢ , = ( ·𝑖 ‘ 𝐺 ) |
| 171 |
141 170 124 143 29
|
iscph |
⊢ ( 𝐺 ∈ ℂPreHil ↔ ( ( 𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ∧ ( √ “ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ 𝐹 ) ∧ ( norm ‘ 𝐺 ) = ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) ) ) |
| 172 |
147 163 169 171
|
syl3anbrc |
⊢ ( 𝜑 → 𝐺 ∈ ℂPreHil ) |