Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
β’ πΊ = ( toβPreHil β π ) |
2 |
|
tcphval.v |
β’ π = ( Base β π ) |
3 |
|
tcphval.h |
β’ , = ( Β·π β π ) |
4 |
|
id |
β’ ( π€ = π β π€ = π ) |
5 |
|
fveq2 |
β’ ( π€ = π β ( Base β π€ ) = ( Base β π ) ) |
6 |
5 2
|
eqtr4di |
β’ ( π€ = π β ( Base β π€ ) = π ) |
7 |
|
fveq2 |
β’ ( π€ = π β ( Β·π β π€ ) = ( Β·π β π ) ) |
8 |
7 3
|
eqtr4di |
β’ ( π€ = π β ( Β·π β π€ ) = , ) |
9 |
8
|
oveqd |
β’ ( π€ = π β ( π₯ ( Β·π β π€ ) π₯ ) = ( π₯ , π₯ ) ) |
10 |
9
|
fveq2d |
β’ ( π€ = π β ( β β ( π₯ ( Β·π β π€ ) π₯ ) ) = ( β β ( π₯ , π₯ ) ) ) |
11 |
6 10
|
mpteq12dv |
β’ ( π€ = π β ( π₯ β ( Base β π€ ) β¦ ( β β ( π₯ ( Β·π β π€ ) π₯ ) ) ) = ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) |
12 |
4 11
|
oveq12d |
β’ ( π€ = π β ( π€ toNrmGrp ( π₯ β ( Base β π€ ) β¦ ( β β ( π₯ ( Β·π β π€ ) π₯ ) ) ) ) = ( π toNrmGrp ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) |
13 |
|
df-tcph |
β’ toβPreHil = ( π€ β V β¦ ( π€ toNrmGrp ( π₯ β ( Base β π€ ) β¦ ( β β ( π₯ ( Β·π β π€ ) π₯ ) ) ) ) ) |
14 |
|
ovex |
β’ ( π toNrmGrp ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) β V |
15 |
12 13 14
|
fvmpt |
β’ ( π β V β ( toβPreHil β π ) = ( π toNrmGrp ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) |
16 |
|
fvprc |
β’ ( Β¬ π β V β ( toβPreHil β π ) = β
) |
17 |
|
reldmtng |
β’ Rel dom toNrmGrp |
18 |
17
|
ovprc1 |
β’ ( Β¬ π β V β ( π toNrmGrp ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) = β
) |
19 |
16 18
|
eqtr4d |
β’ ( Β¬ π β V β ( toβPreHil β π ) = ( π toNrmGrp ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) ) |
20 |
15 19
|
pm2.61i |
β’ ( toβPreHil β π ) = ( π toNrmGrp ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) |
21 |
1 20
|
eqtri |
β’ πΊ = ( π toNrmGrp ( π₯ β π β¦ ( β β ( π₯ , π₯ ) ) ) ) |