Metamath Proof Explorer


Theorem reldmtng

Description: The function toNrmGrp is a two-argument function. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Assertion reldmtng Rel dom toNrmGrp

Proof

Step Hyp Ref Expression
1 df-tng toNrmGrp = ( 𝑔 ∈ V , 𝑓 ∈ V ↦ ( ( 𝑔 sSet ⟨ ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g𝑔 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g𝑔 ) ) ) ⟩ ) )
2 1 reldmmpo Rel dom toNrmGrp