Metamath Proof Explorer


Theorem tcphbas

Description: The base set of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n ⊒ 𝐺 = ( toβ„‚PreHil β€˜ π‘Š )
tcphbas.v ⊒ 𝑉 = ( Base β€˜ π‘Š )
Assertion tcphbas 𝑉 = ( Base β€˜ 𝐺 )

Proof

Step Hyp Ref Expression
1 tcphval.n ⊒ 𝐺 = ( toβ„‚PreHil β€˜ π‘Š )
2 tcphbas.v ⊒ 𝑉 = ( Base β€˜ π‘Š )
3 2 tcphex ⊒ ( π‘₯ ∈ 𝑉 ↦ ( √ β€˜ ( π‘₯ ( ·𝑖 β€˜ π‘Š ) π‘₯ ) ) ) ∈ V
4 eqid ⊒ ( ·𝑖 β€˜ π‘Š ) = ( ·𝑖 β€˜ π‘Š )
5 1 2 4 tcphval ⊒ 𝐺 = ( π‘Š toNrmGrp ( π‘₯ ∈ 𝑉 ↦ ( √ β€˜ ( π‘₯ ( ·𝑖 β€˜ π‘Š ) π‘₯ ) ) ) )
6 5 2 tngbas ⊒ ( ( π‘₯ ∈ 𝑉 ↦ ( √ β€˜ ( π‘₯ ( ·𝑖 β€˜ π‘Š ) π‘₯ ) ) ) ∈ V β†’ 𝑉 = ( Base β€˜ 𝐺 ) )
7 3 6 ax-mp ⊒ 𝑉 = ( Base β€˜ 𝐺 )