| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n |  |-  G = ( toCPreHil ` W ) | 
						
							| 2 |  | tcphval.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | tcphval.h |  |-  ., = ( .i ` W ) | 
						
							| 4 |  | id |  |-  ( w = W -> w = W ) | 
						
							| 5 |  | fveq2 |  |-  ( w = W -> ( Base ` w ) = ( Base ` W ) ) | 
						
							| 6 | 5 2 | eqtr4di |  |-  ( w = W -> ( Base ` w ) = V ) | 
						
							| 7 |  | fveq2 |  |-  ( w = W -> ( .i ` w ) = ( .i ` W ) ) | 
						
							| 8 | 7 3 | eqtr4di |  |-  ( w = W -> ( .i ` w ) = ., ) | 
						
							| 9 | 8 | oveqd |  |-  ( w = W -> ( x ( .i ` w ) x ) = ( x ., x ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( w = W -> ( sqrt ` ( x ( .i ` w ) x ) ) = ( sqrt ` ( x ., x ) ) ) | 
						
							| 11 | 6 10 | mpteq12dv |  |-  ( w = W -> ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) | 
						
							| 12 | 4 11 | oveq12d |  |-  ( w = W -> ( w toNrmGrp ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) | 
						
							| 13 |  | df-tcph |  |-  toCPreHil = ( w e. _V |-> ( w toNrmGrp ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) ) | 
						
							| 14 |  | ovex |  |-  ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) e. _V | 
						
							| 15 | 12 13 14 | fvmpt |  |-  ( W e. _V -> ( toCPreHil ` W ) = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) | 
						
							| 16 |  | fvprc |  |-  ( -. W e. _V -> ( toCPreHil ` W ) = (/) ) | 
						
							| 17 |  | reldmtng |  |-  Rel dom toNrmGrp | 
						
							| 18 | 17 | ovprc1 |  |-  ( -. W e. _V -> ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) = (/) ) | 
						
							| 19 | 16 18 | eqtr4d |  |-  ( -. W e. _V -> ( toCPreHil ` W ) = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) | 
						
							| 20 | 15 19 | pm2.61i |  |-  ( toCPreHil ` W ) = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) | 
						
							| 21 | 1 20 | eqtri |  |-  G = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |