Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
β’ πΊ = ( toβPreHil β π ) |
2 |
|
tcphcph.v |
β’ π = ( Base β π ) |
3 |
|
tcphcph.f |
β’ πΉ = ( Scalar β π ) |
4 |
|
tcphcph.1 |
β’ ( π β π β PreHil ) |
5 |
|
tcphcph.2 |
β’ ( π β πΉ = ( βfld βΎs πΎ ) ) |
6 |
|
tcphcph.h |
β’ , = ( Β·π β π ) |
7 |
|
tcphcph.3 |
β’ ( ( π β§ ( π₯ β πΎ β§ π₯ β β β§ 0 β€ π₯ ) ) β ( β β π₯ ) β πΎ ) |
8 |
|
tcphcph.4 |
β’ ( ( π β§ π₯ β π ) β 0 β€ ( π₯ , π₯ ) ) |
9 |
|
tcphcph.k |
β’ πΎ = ( Base β πΉ ) |
10 |
|
tcphcph.s |
β’ Β· = ( Β·π β π ) |
11 |
|
tcphcphlem2.3 |
β’ ( π β π β πΎ ) |
12 |
|
tcphcphlem2.4 |
β’ ( π β π β π ) |
13 |
1 2 3 4 5
|
phclm |
β’ ( π β π β βMod ) |
14 |
3 9
|
clmsscn |
β’ ( π β βMod β πΎ β β ) |
15 |
13 14
|
syl |
β’ ( π β πΎ β β ) |
16 |
15 11
|
sseldd |
β’ ( π β π β β ) |
17 |
16
|
cjmulrcld |
β’ ( π β ( π Β· ( β β π ) ) β β ) |
18 |
16
|
cjmulge0d |
β’ ( π β 0 β€ ( π Β· ( β β π ) ) ) |
19 |
1 2 3 4 5 6
|
tcphcphlem3 |
β’ ( ( π β§ π β π ) β ( π , π ) β β ) |
20 |
12 19
|
mpdan |
β’ ( π β ( π , π ) β β ) |
21 |
|
oveq12 |
β’ ( ( π₯ = π β§ π₯ = π ) β ( π₯ , π₯ ) = ( π , π ) ) |
22 |
21
|
anidms |
β’ ( π₯ = π β ( π₯ , π₯ ) = ( π , π ) ) |
23 |
22
|
breq2d |
β’ ( π₯ = π β ( 0 β€ ( π₯ , π₯ ) β 0 β€ ( π , π ) ) ) |
24 |
8
|
ralrimiva |
β’ ( π β β π₯ β π 0 β€ ( π₯ , π₯ ) ) |
25 |
23 24 12
|
rspcdva |
β’ ( π β 0 β€ ( π , π ) ) |
26 |
17 18 20 25
|
sqrtmuld |
β’ ( π β ( β β ( ( π Β· ( β β π ) ) Β· ( π , π ) ) ) = ( ( β β ( π Β· ( β β π ) ) ) Β· ( β β ( π , π ) ) ) ) |
27 |
|
phllmod |
β’ ( π β PreHil β π β LMod ) |
28 |
4 27
|
syl |
β’ ( π β π β LMod ) |
29 |
2 3 10 9
|
lmodvscl |
β’ ( ( π β LMod β§ π β πΎ β§ π β π ) β ( π Β· π ) β π ) |
30 |
28 11 12 29
|
syl3anc |
β’ ( π β ( π Β· π ) β π ) |
31 |
|
eqid |
β’ ( .r β πΉ ) = ( .r β πΉ ) |
32 |
|
eqid |
β’ ( *π β πΉ ) = ( *π β πΉ ) |
33 |
3 6 2 9 10 31 32
|
ipassr |
β’ ( ( π β PreHil β§ ( ( π Β· π ) β π β§ π β π β§ π β πΎ ) ) β ( ( π Β· π ) , ( π Β· π ) ) = ( ( ( π Β· π ) , π ) ( .r β πΉ ) ( ( *π β πΉ ) β π ) ) ) |
34 |
4 30 12 11 33
|
syl13anc |
β’ ( π β ( ( π Β· π ) , ( π Β· π ) ) = ( ( ( π Β· π ) , π ) ( .r β πΉ ) ( ( *π β πΉ ) β π ) ) ) |
35 |
3
|
clmmul |
β’ ( π β βMod β Β· = ( .r β πΉ ) ) |
36 |
13 35
|
syl |
β’ ( π β Β· = ( .r β πΉ ) ) |
37 |
36
|
oveqd |
β’ ( π β ( π Β· ( π , π ) ) = ( π ( .r β πΉ ) ( π , π ) ) ) |
38 |
3 6 2 9 10 31
|
ipass |
β’ ( ( π β PreHil β§ ( π β πΎ β§ π β π β§ π β π ) ) β ( ( π Β· π ) , π ) = ( π ( .r β πΉ ) ( π , π ) ) ) |
39 |
4 11 12 12 38
|
syl13anc |
β’ ( π β ( ( π Β· π ) , π ) = ( π ( .r β πΉ ) ( π , π ) ) ) |
40 |
37 39
|
eqtr4d |
β’ ( π β ( π Β· ( π , π ) ) = ( ( π Β· π ) , π ) ) |
41 |
3
|
clmcj |
β’ ( π β βMod β β = ( *π β πΉ ) ) |
42 |
13 41
|
syl |
β’ ( π β β = ( *π β πΉ ) ) |
43 |
42
|
fveq1d |
β’ ( π β ( β β π ) = ( ( *π β πΉ ) β π ) ) |
44 |
36 40 43
|
oveq123d |
β’ ( π β ( ( π Β· ( π , π ) ) Β· ( β β π ) ) = ( ( ( π Β· π ) , π ) ( .r β πΉ ) ( ( *π β πΉ ) β π ) ) ) |
45 |
20
|
recnd |
β’ ( π β ( π , π ) β β ) |
46 |
16
|
cjcld |
β’ ( π β ( β β π ) β β ) |
47 |
16 45 46
|
mul32d |
β’ ( π β ( ( π Β· ( π , π ) ) Β· ( β β π ) ) = ( ( π Β· ( β β π ) ) Β· ( π , π ) ) ) |
48 |
34 44 47
|
3eqtr2d |
β’ ( π β ( ( π Β· π ) , ( π Β· π ) ) = ( ( π Β· ( β β π ) ) Β· ( π , π ) ) ) |
49 |
48
|
fveq2d |
β’ ( π β ( β β ( ( π Β· π ) , ( π Β· π ) ) ) = ( β β ( ( π Β· ( β β π ) ) Β· ( π , π ) ) ) ) |
50 |
|
absval |
β’ ( π β β β ( abs β π ) = ( β β ( π Β· ( β β π ) ) ) ) |
51 |
16 50
|
syl |
β’ ( π β ( abs β π ) = ( β β ( π Β· ( β β π ) ) ) ) |
52 |
51
|
oveq1d |
β’ ( π β ( ( abs β π ) Β· ( β β ( π , π ) ) ) = ( ( β β ( π Β· ( β β π ) ) ) Β· ( β β ( π , π ) ) ) ) |
53 |
26 49 52
|
3eqtr4d |
β’ ( π β ( β β ( ( π Β· π ) , ( π Β· π ) ) ) = ( ( abs β π ) Β· ( β β ( π , π ) ) ) ) |