| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n |  |-  G = ( toCPreHil ` W ) | 
						
							| 2 |  | tcphcph.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | tcphcph.f |  |-  F = ( Scalar ` W ) | 
						
							| 4 |  | tcphcph.1 |  |-  ( ph -> W e. PreHil ) | 
						
							| 5 |  | tcphcph.2 |  |-  ( ph -> F = ( CCfld |`s K ) ) | 
						
							| 6 |  | tcphcph.h |  |-  ., = ( .i ` W ) | 
						
							| 7 |  | tcphcph.3 |  |-  ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. K ) | 
						
							| 8 |  | tcphcph.4 |  |-  ( ( ph /\ x e. V ) -> 0 <_ ( x ., x ) ) | 
						
							| 9 |  | tcphcph.k |  |-  K = ( Base ` F ) | 
						
							| 10 |  | tcphcph.s |  |-  .x. = ( .s ` W ) | 
						
							| 11 |  | tcphcphlem2.3 |  |-  ( ph -> X e. K ) | 
						
							| 12 |  | tcphcphlem2.4 |  |-  ( ph -> Y e. V ) | 
						
							| 13 | 1 2 3 4 5 | phclm |  |-  ( ph -> W e. CMod ) | 
						
							| 14 | 3 9 | clmsscn |  |-  ( W e. CMod -> K C_ CC ) | 
						
							| 15 | 13 14 | syl |  |-  ( ph -> K C_ CC ) | 
						
							| 16 | 15 11 | sseldd |  |-  ( ph -> X e. CC ) | 
						
							| 17 | 16 | cjmulrcld |  |-  ( ph -> ( X x. ( * ` X ) ) e. RR ) | 
						
							| 18 | 16 | cjmulge0d |  |-  ( ph -> 0 <_ ( X x. ( * ` X ) ) ) | 
						
							| 19 | 1 2 3 4 5 6 | tcphcphlem3 |  |-  ( ( ph /\ Y e. V ) -> ( Y ., Y ) e. RR ) | 
						
							| 20 | 12 19 | mpdan |  |-  ( ph -> ( Y ., Y ) e. RR ) | 
						
							| 21 |  | oveq12 |  |-  ( ( x = Y /\ x = Y ) -> ( x ., x ) = ( Y ., Y ) ) | 
						
							| 22 | 21 | anidms |  |-  ( x = Y -> ( x ., x ) = ( Y ., Y ) ) | 
						
							| 23 | 22 | breq2d |  |-  ( x = Y -> ( 0 <_ ( x ., x ) <-> 0 <_ ( Y ., Y ) ) ) | 
						
							| 24 | 8 | ralrimiva |  |-  ( ph -> A. x e. V 0 <_ ( x ., x ) ) | 
						
							| 25 | 23 24 12 | rspcdva |  |-  ( ph -> 0 <_ ( Y ., Y ) ) | 
						
							| 26 | 17 18 20 25 | sqrtmuld |  |-  ( ph -> ( sqrt ` ( ( X x. ( * ` X ) ) x. ( Y ., Y ) ) ) = ( ( sqrt ` ( X x. ( * ` X ) ) ) x. ( sqrt ` ( Y ., Y ) ) ) ) | 
						
							| 27 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 28 | 4 27 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 29 | 2 3 10 9 | lmodvscl |  |-  ( ( W e. LMod /\ X e. K /\ Y e. V ) -> ( X .x. Y ) e. V ) | 
						
							| 30 | 28 11 12 29 | syl3anc |  |-  ( ph -> ( X .x. Y ) e. V ) | 
						
							| 31 |  | eqid |  |-  ( .r ` F ) = ( .r ` F ) | 
						
							| 32 |  | eqid |  |-  ( *r ` F ) = ( *r ` F ) | 
						
							| 33 | 3 6 2 9 10 31 32 | ipassr |  |-  ( ( W e. PreHil /\ ( ( X .x. Y ) e. V /\ Y e. V /\ X e. K ) ) -> ( ( X .x. Y ) ., ( X .x. Y ) ) = ( ( ( X .x. Y ) ., Y ) ( .r ` F ) ( ( *r ` F ) ` X ) ) ) | 
						
							| 34 | 4 30 12 11 33 | syl13anc |  |-  ( ph -> ( ( X .x. Y ) ., ( X .x. Y ) ) = ( ( ( X .x. Y ) ., Y ) ( .r ` F ) ( ( *r ` F ) ` X ) ) ) | 
						
							| 35 | 3 | clmmul |  |-  ( W e. CMod -> x. = ( .r ` F ) ) | 
						
							| 36 | 13 35 | syl |  |-  ( ph -> x. = ( .r ` F ) ) | 
						
							| 37 | 36 | oveqd |  |-  ( ph -> ( X x. ( Y ., Y ) ) = ( X ( .r ` F ) ( Y ., Y ) ) ) | 
						
							| 38 | 3 6 2 9 10 31 | ipass |  |-  ( ( W e. PreHil /\ ( X e. K /\ Y e. V /\ Y e. V ) ) -> ( ( X .x. Y ) ., Y ) = ( X ( .r ` F ) ( Y ., Y ) ) ) | 
						
							| 39 | 4 11 12 12 38 | syl13anc |  |-  ( ph -> ( ( X .x. Y ) ., Y ) = ( X ( .r ` F ) ( Y ., Y ) ) ) | 
						
							| 40 | 37 39 | eqtr4d |  |-  ( ph -> ( X x. ( Y ., Y ) ) = ( ( X .x. Y ) ., Y ) ) | 
						
							| 41 | 3 | clmcj |  |-  ( W e. CMod -> * = ( *r ` F ) ) | 
						
							| 42 | 13 41 | syl |  |-  ( ph -> * = ( *r ` F ) ) | 
						
							| 43 | 42 | fveq1d |  |-  ( ph -> ( * ` X ) = ( ( *r ` F ) ` X ) ) | 
						
							| 44 | 36 40 43 | oveq123d |  |-  ( ph -> ( ( X x. ( Y ., Y ) ) x. ( * ` X ) ) = ( ( ( X .x. Y ) ., Y ) ( .r ` F ) ( ( *r ` F ) ` X ) ) ) | 
						
							| 45 | 20 | recnd |  |-  ( ph -> ( Y ., Y ) e. CC ) | 
						
							| 46 | 16 | cjcld |  |-  ( ph -> ( * ` X ) e. CC ) | 
						
							| 47 | 16 45 46 | mul32d |  |-  ( ph -> ( ( X x. ( Y ., Y ) ) x. ( * ` X ) ) = ( ( X x. ( * ` X ) ) x. ( Y ., Y ) ) ) | 
						
							| 48 | 34 44 47 | 3eqtr2d |  |-  ( ph -> ( ( X .x. Y ) ., ( X .x. Y ) ) = ( ( X x. ( * ` X ) ) x. ( Y ., Y ) ) ) | 
						
							| 49 | 48 | fveq2d |  |-  ( ph -> ( sqrt ` ( ( X .x. Y ) ., ( X .x. Y ) ) ) = ( sqrt ` ( ( X x. ( * ` X ) ) x. ( Y ., Y ) ) ) ) | 
						
							| 50 |  | absval |  |-  ( X e. CC -> ( abs ` X ) = ( sqrt ` ( X x. ( * ` X ) ) ) ) | 
						
							| 51 | 16 50 | syl |  |-  ( ph -> ( abs ` X ) = ( sqrt ` ( X x. ( * ` X ) ) ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( ph -> ( ( abs ` X ) x. ( sqrt ` ( Y ., Y ) ) ) = ( ( sqrt ` ( X x. ( * ` X ) ) ) x. ( sqrt ` ( Y ., Y ) ) ) ) | 
						
							| 53 | 26 49 52 | 3eqtr4d |  |-  ( ph -> ( sqrt ` ( ( X .x. Y ) ., ( X .x. Y ) ) ) = ( ( abs ` X ) x. ( sqrt ` ( Y ., Y ) ) ) ) |