| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcphval.n |
|- G = ( toCPreHil ` W ) |
| 2 |
|
tcphcph.v |
|- V = ( Base ` W ) |
| 3 |
|
tcphcph.f |
|- F = ( Scalar ` W ) |
| 4 |
|
tcphcph.1 |
|- ( ph -> W e. PreHil ) |
| 5 |
|
tcphcph.2 |
|- ( ph -> F = ( CCfld |`s K ) ) |
| 6 |
|
tcphcph.h |
|- ., = ( .i ` W ) |
| 7 |
|
tcphcph.3 |
|- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. K ) |
| 8 |
|
tcphcph.4 |
|- ( ( ph /\ x e. V ) -> 0 <_ ( x ., x ) ) |
| 9 |
1
|
tcphphl |
|- ( W e. PreHil <-> G e. PreHil ) |
| 10 |
4 9
|
sylib |
|- ( ph -> G e. PreHil ) |
| 11 |
1 2 6
|
tcphval |
|- G = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| 12 |
|
eqid |
|- ( -g ` W ) = ( -g ` W ) |
| 13 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 14 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
| 15 |
4 14
|
syl |
|- ( ph -> W e. LMod ) |
| 16 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
| 17 |
15 16
|
syl |
|- ( ph -> W e. Grp ) |
| 18 |
1 2 3 4 5 6
|
tcphcphlem3 |
|- ( ( ph /\ x e. V ) -> ( x ., x ) e. RR ) |
| 19 |
18 8
|
resqrtcld |
|- ( ( ph /\ x e. V ) -> ( sqrt ` ( x ., x ) ) e. RR ) |
| 20 |
19
|
fmpttd |
|- ( ph -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> RR ) |
| 21 |
|
oveq12 |
|- ( ( x = y /\ x = y ) -> ( x ., x ) = ( y ., y ) ) |
| 22 |
21
|
anidms |
|- ( x = y -> ( x ., x ) = ( y ., y ) ) |
| 23 |
22
|
fveq2d |
|- ( x = y -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( y ., y ) ) ) |
| 24 |
|
eqid |
|- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) |
| 25 |
|
fvex |
|- ( sqrt ` ( x ., x ) ) e. _V |
| 26 |
23 24 25
|
fvmpt3i |
|- ( y e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = ( sqrt ` ( y ., y ) ) ) |
| 27 |
26
|
adantl |
|- ( ( ph /\ y e. V ) -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = ( sqrt ` ( y ., y ) ) ) |
| 28 |
27
|
eqeq1d |
|- ( ( ph /\ y e. V ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = 0 <-> ( sqrt ` ( y ., y ) ) = 0 ) ) |
| 29 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 30 |
|
phllvec |
|- ( W e. PreHil -> W e. LVec ) |
| 31 |
4 30
|
syl |
|- ( ph -> W e. LVec ) |
| 32 |
3
|
lvecdrng |
|- ( W e. LVec -> F e. DivRing ) |
| 33 |
31 32
|
syl |
|- ( ph -> F e. DivRing ) |
| 34 |
29 5 33
|
cphsubrglem |
|- ( ph -> ( F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) = ( K i^i CC ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) |
| 35 |
34
|
simp2d |
|- ( ph -> ( Base ` F ) = ( K i^i CC ) ) |
| 36 |
|
inss2 |
|- ( K i^i CC ) C_ CC |
| 37 |
35 36
|
eqsstrdi |
|- ( ph -> ( Base ` F ) C_ CC ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ y e. V ) -> ( Base ` F ) C_ CC ) |
| 39 |
3 6 2 29
|
ipcl |
|- ( ( W e. PreHil /\ y e. V /\ y e. V ) -> ( y ., y ) e. ( Base ` F ) ) |
| 40 |
39
|
3anidm23 |
|- ( ( W e. PreHil /\ y e. V ) -> ( y ., y ) e. ( Base ` F ) ) |
| 41 |
4 40
|
sylan |
|- ( ( ph /\ y e. V ) -> ( y ., y ) e. ( Base ` F ) ) |
| 42 |
38 41
|
sseldd |
|- ( ( ph /\ y e. V ) -> ( y ., y ) e. CC ) |
| 43 |
42
|
sqrtcld |
|- ( ( ph /\ y e. V ) -> ( sqrt ` ( y ., y ) ) e. CC ) |
| 44 |
|
sqeq0 |
|- ( ( sqrt ` ( y ., y ) ) e. CC -> ( ( ( sqrt ` ( y ., y ) ) ^ 2 ) = 0 <-> ( sqrt ` ( y ., y ) ) = 0 ) ) |
| 45 |
43 44
|
syl |
|- ( ( ph /\ y e. V ) -> ( ( ( sqrt ` ( y ., y ) ) ^ 2 ) = 0 <-> ( sqrt ` ( y ., y ) ) = 0 ) ) |
| 46 |
42
|
sqsqrtd |
|- ( ( ph /\ y e. V ) -> ( ( sqrt ` ( y ., y ) ) ^ 2 ) = ( y ., y ) ) |
| 47 |
1 2 3 4 5
|
phclm |
|- ( ph -> W e. CMod ) |
| 48 |
3
|
clm0 |
|- ( W e. CMod -> 0 = ( 0g ` F ) ) |
| 49 |
47 48
|
syl |
|- ( ph -> 0 = ( 0g ` F ) ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ y e. V ) -> 0 = ( 0g ` F ) ) |
| 51 |
46 50
|
eqeq12d |
|- ( ( ph /\ y e. V ) -> ( ( ( sqrt ` ( y ., y ) ) ^ 2 ) = 0 <-> ( y ., y ) = ( 0g ` F ) ) ) |
| 52 |
45 51
|
bitr3d |
|- ( ( ph /\ y e. V ) -> ( ( sqrt ` ( y ., y ) ) = 0 <-> ( y ., y ) = ( 0g ` F ) ) ) |
| 53 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
| 54 |
3 6 2 53 13
|
ipeq0 |
|- ( ( W e. PreHil /\ y e. V ) -> ( ( y ., y ) = ( 0g ` F ) <-> y = ( 0g ` W ) ) ) |
| 55 |
4 54
|
sylan |
|- ( ( ph /\ y e. V ) -> ( ( y ., y ) = ( 0g ` F ) <-> y = ( 0g ` W ) ) ) |
| 56 |
28 52 55
|
3bitrd |
|- ( ( ph /\ y e. V ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = 0 <-> y = ( 0g ` W ) ) ) |
| 57 |
4
|
adantr |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> W e. PreHil ) |
| 58 |
34
|
simp1d |
|- ( ph -> F = ( CCfld |`s ( Base ` F ) ) ) |
| 59 |
58
|
adantr |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> F = ( CCfld |`s ( Base ` F ) ) ) |
| 60 |
|
3anass |
|- ( ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) <-> ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) ) |
| 61 |
|
simpr2 |
|- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> x e. RR ) |
| 62 |
61
|
recnd |
|- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> x e. CC ) |
| 63 |
62
|
sqrtcld |
|- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. CC ) |
| 64 |
7 63
|
jca |
|- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) |
| 65 |
64
|
ex |
|- ( ph -> ( ( x e. K /\ x e. RR /\ 0 <_ x ) -> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) ) |
| 66 |
35
|
eleq2d |
|- ( ph -> ( x e. ( Base ` F ) <-> x e. ( K i^i CC ) ) ) |
| 67 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 68 |
|
elin |
|- ( x e. ( K i^i CC ) <-> ( x e. K /\ x e. CC ) ) |
| 69 |
68
|
rbaib |
|- ( x e. CC -> ( x e. ( K i^i CC ) <-> x e. K ) ) |
| 70 |
67 69
|
syl |
|- ( x e. RR -> ( x e. ( K i^i CC ) <-> x e. K ) ) |
| 71 |
66 70
|
sylan9bb |
|- ( ( ph /\ x e. RR ) -> ( x e. ( Base ` F ) <-> x e. K ) ) |
| 72 |
71
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ 0 <_ x ) ) -> ( x e. ( Base ` F ) <-> x e. K ) ) |
| 73 |
72
|
ex |
|- ( ph -> ( ( x e. RR /\ 0 <_ x ) -> ( x e. ( Base ` F ) <-> x e. K ) ) ) |
| 74 |
73
|
pm5.32rd |
|- ( ph -> ( ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) <-> ( x e. K /\ ( x e. RR /\ 0 <_ x ) ) ) ) |
| 75 |
|
3anass |
|- ( ( x e. K /\ x e. RR /\ 0 <_ x ) <-> ( x e. K /\ ( x e. RR /\ 0 <_ x ) ) ) |
| 76 |
74 75
|
bitr4di |
|- ( ph -> ( ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) <-> ( x e. K /\ x e. RR /\ 0 <_ x ) ) ) |
| 77 |
35
|
eleq2d |
|- ( ph -> ( ( sqrt ` x ) e. ( Base ` F ) <-> ( sqrt ` x ) e. ( K i^i CC ) ) ) |
| 78 |
|
elin |
|- ( ( sqrt ` x ) e. ( K i^i CC ) <-> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) |
| 79 |
77 78
|
bitrdi |
|- ( ph -> ( ( sqrt ` x ) e. ( Base ` F ) <-> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) ) |
| 80 |
65 76 79
|
3imtr4d |
|- ( ph -> ( ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) ) |
| 81 |
60 80
|
biimtrid |
|- ( ph -> ( ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) -> ( sqrt ` x ) e. ( Base ` F ) ) ) |
| 82 |
81
|
imp |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) |
| 83 |
82
|
adantlr |
|- ( ( ( ph /\ ( y e. V /\ z e. V ) ) /\ ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) |
| 84 |
8
|
adantlr |
|- ( ( ( ph /\ ( y e. V /\ z e. V ) ) /\ x e. V ) -> 0 <_ ( x ., x ) ) |
| 85 |
|
simprl |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> y e. V ) |
| 86 |
|
simprr |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> z e. V ) |
| 87 |
1 2 3 57 59 6 83 84 29 12 85 86
|
tcphcphlem1 |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) <_ ( ( sqrt ` ( y ., y ) ) + ( sqrt ` ( z ., z ) ) ) ) |
| 88 |
2 12
|
grpsubcl |
|- ( ( W e. Grp /\ y e. V /\ z e. V ) -> ( y ( -g ` W ) z ) e. V ) |
| 89 |
88
|
3expb |
|- ( ( W e. Grp /\ ( y e. V /\ z e. V ) ) -> ( y ( -g ` W ) z ) e. V ) |
| 90 |
17 89
|
sylan |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y ( -g ` W ) z ) e. V ) |
| 91 |
|
oveq12 |
|- ( ( x = ( y ( -g ` W ) z ) /\ x = ( y ( -g ` W ) z ) ) -> ( x ., x ) = ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) |
| 92 |
91
|
anidms |
|- ( x = ( y ( -g ` W ) z ) -> ( x ., x ) = ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) |
| 93 |
92
|
fveq2d |
|- ( x = ( y ( -g ` W ) z ) -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) ) |
| 94 |
93 24 25
|
fvmpt3i |
|- ( ( y ( -g ` W ) z ) e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` ( y ( -g ` W ) z ) ) = ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) ) |
| 95 |
90 94
|
syl |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` ( y ( -g ` W ) z ) ) = ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) ) |
| 96 |
|
oveq12 |
|- ( ( x = z /\ x = z ) -> ( x ., x ) = ( z ., z ) ) |
| 97 |
96
|
anidms |
|- ( x = z -> ( x ., x ) = ( z ., z ) ) |
| 98 |
97
|
fveq2d |
|- ( x = z -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( z ., z ) ) ) |
| 99 |
98 24 25
|
fvmpt3i |
|- ( z e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) = ( sqrt ` ( z ., z ) ) ) |
| 100 |
26 99
|
oveqan12d |
|- ( ( y e. V /\ z e. V ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) + ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) ) = ( ( sqrt ` ( y ., y ) ) + ( sqrt ` ( z ., z ) ) ) ) |
| 101 |
100
|
adantl |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) + ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) ) = ( ( sqrt ` ( y ., y ) ) + ( sqrt ` ( z ., z ) ) ) ) |
| 102 |
87 95 101
|
3brtr4d |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` ( y ( -g ` W ) z ) ) <_ ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) + ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) ) ) |
| 103 |
11 2 12 13 17 20 56 102
|
tngngpd |
|- ( ph -> G e. NrmGrp ) |
| 104 |
|
phllmod |
|- ( G e. PreHil -> G e. LMod ) |
| 105 |
10 104
|
syl |
|- ( ph -> G e. LMod ) |
| 106 |
|
cnnrg |
|- CCfld e. NrmRing |
| 107 |
34
|
simp3d |
|- ( ph -> ( Base ` F ) e. ( SubRing ` CCfld ) ) |
| 108 |
|
eqid |
|- ( CCfld |`s ( Base ` F ) ) = ( CCfld |`s ( Base ` F ) ) |
| 109 |
108
|
subrgnrg |
|- ( ( CCfld e. NrmRing /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) -> ( CCfld |`s ( Base ` F ) ) e. NrmRing ) |
| 110 |
106 107 109
|
sylancr |
|- ( ph -> ( CCfld |`s ( Base ` F ) ) e. NrmRing ) |
| 111 |
58 110
|
eqeltrd |
|- ( ph -> F e. NrmRing ) |
| 112 |
103 105 111
|
3jca |
|- ( ph -> ( G e. NrmGrp /\ G e. LMod /\ F e. NrmRing ) ) |
| 113 |
4
|
adantr |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> W e. PreHil ) |
| 114 |
58
|
adantr |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> F = ( CCfld |`s ( Base ` F ) ) ) |
| 115 |
82
|
adantlr |
|- ( ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) /\ ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) |
| 116 |
8
|
adantlr |
|- ( ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) /\ x e. V ) -> 0 <_ ( x ., x ) ) |
| 117 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 118 |
|
simprl |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> y e. ( Base ` F ) ) |
| 119 |
|
simprr |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> z e. V ) |
| 120 |
1 2 3 113 114 6 115 116 29 117 118 119
|
tcphcphlem2 |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( sqrt ` ( ( y ( .s ` W ) z ) ., ( y ( .s ` W ) z ) ) ) = ( ( abs ` y ) x. ( sqrt ` ( z ., z ) ) ) ) |
| 121 |
2 3 117 29
|
lmodvscl |
|- ( ( W e. LMod /\ y e. ( Base ` F ) /\ z e. V ) -> ( y ( .s ` W ) z ) e. V ) |
| 122 |
121
|
3expb |
|- ( ( W e. LMod /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( y ( .s ` W ) z ) e. V ) |
| 123 |
15 122
|
sylan |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( y ( .s ` W ) z ) e. V ) |
| 124 |
|
eqid |
|- ( norm ` G ) = ( norm ` G ) |
| 125 |
1 124 2 6
|
tcphnmval |
|- ( ( W e. Grp /\ ( y ( .s ` W ) z ) e. V ) -> ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( sqrt ` ( ( y ( .s ` W ) z ) ., ( y ( .s ` W ) z ) ) ) ) |
| 126 |
17 123 125
|
syl2an2r |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( sqrt ` ( ( y ( .s ` W ) z ) ., ( y ( .s ` W ) z ) ) ) ) |
| 127 |
114
|
fveq2d |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( norm ` F ) = ( norm ` ( CCfld |`s ( Base ` F ) ) ) ) |
| 128 |
127
|
fveq1d |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` F ) ` y ) = ( ( norm ` ( CCfld |`s ( Base ` F ) ) ) ` y ) ) |
| 129 |
|
subrgsubg |
|- ( ( Base ` F ) e. ( SubRing ` CCfld ) -> ( Base ` F ) e. ( SubGrp ` CCfld ) ) |
| 130 |
107 129
|
syl |
|- ( ph -> ( Base ` F ) e. ( SubGrp ` CCfld ) ) |
| 131 |
|
cnfldnm |
|- abs = ( norm ` CCfld ) |
| 132 |
|
eqid |
|- ( norm ` ( CCfld |`s ( Base ` F ) ) ) = ( norm ` ( CCfld |`s ( Base ` F ) ) ) |
| 133 |
108 131 132
|
subgnm2 |
|- ( ( ( Base ` F ) e. ( SubGrp ` CCfld ) /\ y e. ( Base ` F ) ) -> ( ( norm ` ( CCfld |`s ( Base ` F ) ) ) ` y ) = ( abs ` y ) ) |
| 134 |
130 118 133
|
syl2an2r |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` ( CCfld |`s ( Base ` F ) ) ) ` y ) = ( abs ` y ) ) |
| 135 |
128 134
|
eqtrd |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` F ) ` y ) = ( abs ` y ) ) |
| 136 |
1 124 2 6
|
tcphnmval |
|- ( ( W e. Grp /\ z e. V ) -> ( ( norm ` G ) ` z ) = ( sqrt ` ( z ., z ) ) ) |
| 137 |
17 119 136
|
syl2an2r |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` G ) ` z ) = ( sqrt ` ( z ., z ) ) ) |
| 138 |
135 137
|
oveq12d |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) = ( ( abs ` y ) x. ( sqrt ` ( z ., z ) ) ) ) |
| 139 |
120 126 138
|
3eqtr4d |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) ) |
| 140 |
139
|
ralrimivva |
|- ( ph -> A. y e. ( Base ` F ) A. z e. V ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) ) |
| 141 |
1 2
|
tcphbas |
|- V = ( Base ` G ) |
| 142 |
1 117
|
tcphvsca |
|- ( .s ` W ) = ( .s ` G ) |
| 143 |
1 3
|
tcphsca |
|- F = ( Scalar ` G ) |
| 144 |
|
eqid |
|- ( norm ` F ) = ( norm ` F ) |
| 145 |
141 124 142 143 29 144
|
isnlm |
|- ( G e. NrmMod <-> ( ( G e. NrmGrp /\ G e. LMod /\ F e. NrmRing ) /\ A. y e. ( Base ` F ) A. z e. V ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) ) ) |
| 146 |
112 140 145
|
sylanbrc |
|- ( ph -> G e. NrmMod ) |
| 147 |
10 146 58
|
3jca |
|- ( ph -> ( G e. PreHil /\ G e. NrmMod /\ F = ( CCfld |`s ( Base ` F ) ) ) ) |
| 148 |
|
elin |
|- ( x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) <-> ( x e. ( Base ` F ) /\ x e. ( 0 [,) +oo ) ) ) |
| 149 |
|
elrege0 |
|- ( x e. ( 0 [,) +oo ) <-> ( x e. RR /\ 0 <_ x ) ) |
| 150 |
149
|
anbi2i |
|- ( ( x e. ( Base ` F ) /\ x e. ( 0 [,) +oo ) ) <-> ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) ) |
| 151 |
148 150
|
bitri |
|- ( x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) <-> ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) ) |
| 152 |
151 80
|
biimtrid |
|- ( ph -> ( x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) ) |
| 153 |
152
|
ralrimiv |
|- ( ph -> A. x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ( sqrt ` x ) e. ( Base ` F ) ) |
| 154 |
|
sqrtf |
|- sqrt : CC --> CC |
| 155 |
|
ffun |
|- ( sqrt : CC --> CC -> Fun sqrt ) |
| 156 |
154 155
|
ax-mp |
|- Fun sqrt |
| 157 |
|
inss1 |
|- ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ ( Base ` F ) |
| 158 |
157 37
|
sstrid |
|- ( ph -> ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ CC ) |
| 159 |
154
|
fdmi |
|- dom sqrt = CC |
| 160 |
158 159
|
sseqtrrdi |
|- ( ph -> ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ dom sqrt ) |
| 161 |
|
funimass4 |
|- ( ( Fun sqrt /\ ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ dom sqrt ) -> ( ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) <-> A. x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ( sqrt ` x ) e. ( Base ` F ) ) ) |
| 162 |
156 160 161
|
sylancr |
|- ( ph -> ( ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) <-> A. x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ( sqrt ` x ) e. ( Base ` F ) ) ) |
| 163 |
153 162
|
mpbird |
|- ( ph -> ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) ) |
| 164 |
43
|
fmpttd |
|- ( ph -> ( y e. V |-> ( sqrt ` ( y ., y ) ) ) : V --> CC ) |
| 165 |
1 2 6
|
tcphval |
|- G = ( W toNrmGrp ( y e. V |-> ( sqrt ` ( y ., y ) ) ) ) |
| 166 |
|
cnex |
|- CC e. _V |
| 167 |
165 2 166
|
tngnm |
|- ( ( W e. Grp /\ ( y e. V |-> ( sqrt ` ( y ., y ) ) ) : V --> CC ) -> ( y e. V |-> ( sqrt ` ( y ., y ) ) ) = ( norm ` G ) ) |
| 168 |
17 164 167
|
syl2anc |
|- ( ph -> ( y e. V |-> ( sqrt ` ( y ., y ) ) ) = ( norm ` G ) ) |
| 169 |
168
|
eqcomd |
|- ( ph -> ( norm ` G ) = ( y e. V |-> ( sqrt ` ( y ., y ) ) ) ) |
| 170 |
1 6
|
tcphip |
|- ., = ( .i ` G ) |
| 171 |
141 170 124 143 29
|
iscph |
|- ( G e. CPreHil <-> ( ( G e. PreHil /\ G e. NrmMod /\ F = ( CCfld |`s ( Base ` F ) ) ) /\ ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) /\ ( norm ` G ) = ( y e. V |-> ( sqrt ` ( y ., y ) ) ) ) ) |
| 172 |
147 163 169 171
|
syl3anbrc |
|- ( ph -> G e. CPreHil ) |