| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n |  |-  G = ( toCPreHil ` W ) | 
						
							| 2 |  | tcphcph.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | tcphcph.f |  |-  F = ( Scalar ` W ) | 
						
							| 4 |  | tcphcph.1 |  |-  ( ph -> W e. PreHil ) | 
						
							| 5 |  | tcphcph.2 |  |-  ( ph -> F = ( CCfld |`s K ) ) | 
						
							| 6 |  | tcphcph.h |  |-  ., = ( .i ` W ) | 
						
							| 7 |  | tcphcph.3 |  |-  ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. K ) | 
						
							| 8 |  | tcphcph.4 |  |-  ( ( ph /\ x e. V ) -> 0 <_ ( x ., x ) ) | 
						
							| 9 | 1 | tcphphl |  |-  ( W e. PreHil <-> G e. PreHil ) | 
						
							| 10 | 4 9 | sylib |  |-  ( ph -> G e. PreHil ) | 
						
							| 11 | 1 2 6 | tcphval |  |-  G = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) | 
						
							| 12 |  | eqid |  |-  ( -g ` W ) = ( -g ` W ) | 
						
							| 13 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 14 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 15 | 4 14 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 16 |  | lmodgrp |  |-  ( W e. LMod -> W e. Grp ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> W e. Grp ) | 
						
							| 18 | 1 2 3 4 5 6 | tcphcphlem3 |  |-  ( ( ph /\ x e. V ) -> ( x ., x ) e. RR ) | 
						
							| 19 | 18 8 | resqrtcld |  |-  ( ( ph /\ x e. V ) -> ( sqrt ` ( x ., x ) ) e. RR ) | 
						
							| 20 | 19 | fmpttd |  |-  ( ph -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> RR ) | 
						
							| 21 |  | oveq12 |  |-  ( ( x = y /\ x = y ) -> ( x ., x ) = ( y ., y ) ) | 
						
							| 22 | 21 | anidms |  |-  ( x = y -> ( x ., x ) = ( y ., y ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( x = y -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( y ., y ) ) ) | 
						
							| 24 |  | eqid |  |-  ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) | 
						
							| 25 |  | fvex |  |-  ( sqrt ` ( x ., x ) ) e. _V | 
						
							| 26 | 23 24 25 | fvmpt3i |  |-  ( y e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = ( sqrt ` ( y ., y ) ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ph /\ y e. V ) -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = ( sqrt ` ( y ., y ) ) ) | 
						
							| 28 | 27 | eqeq1d |  |-  ( ( ph /\ y e. V ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = 0 <-> ( sqrt ` ( y ., y ) ) = 0 ) ) | 
						
							| 29 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 30 |  | phllvec |  |-  ( W e. PreHil -> W e. LVec ) | 
						
							| 31 | 4 30 | syl |  |-  ( ph -> W e. LVec ) | 
						
							| 32 | 3 | lvecdrng |  |-  ( W e. LVec -> F e. DivRing ) | 
						
							| 33 | 31 32 | syl |  |-  ( ph -> F e. DivRing ) | 
						
							| 34 | 29 5 33 | cphsubrglem |  |-  ( ph -> ( F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) = ( K i^i CC ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) | 
						
							| 35 | 34 | simp2d |  |-  ( ph -> ( Base ` F ) = ( K i^i CC ) ) | 
						
							| 36 |  | inss2 |  |-  ( K i^i CC ) C_ CC | 
						
							| 37 | 35 36 | eqsstrdi |  |-  ( ph -> ( Base ` F ) C_ CC ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ y e. V ) -> ( Base ` F ) C_ CC ) | 
						
							| 39 | 3 6 2 29 | ipcl |  |-  ( ( W e. PreHil /\ y e. V /\ y e. V ) -> ( y ., y ) e. ( Base ` F ) ) | 
						
							| 40 | 39 | 3anidm23 |  |-  ( ( W e. PreHil /\ y e. V ) -> ( y ., y ) e. ( Base ` F ) ) | 
						
							| 41 | 4 40 | sylan |  |-  ( ( ph /\ y e. V ) -> ( y ., y ) e. ( Base ` F ) ) | 
						
							| 42 | 38 41 | sseldd |  |-  ( ( ph /\ y e. V ) -> ( y ., y ) e. CC ) | 
						
							| 43 | 42 | sqrtcld |  |-  ( ( ph /\ y e. V ) -> ( sqrt ` ( y ., y ) ) e. CC ) | 
						
							| 44 |  | sqeq0 |  |-  ( ( sqrt ` ( y ., y ) ) e. CC -> ( ( ( sqrt ` ( y ., y ) ) ^ 2 ) = 0 <-> ( sqrt ` ( y ., y ) ) = 0 ) ) | 
						
							| 45 | 43 44 | syl |  |-  ( ( ph /\ y e. V ) -> ( ( ( sqrt ` ( y ., y ) ) ^ 2 ) = 0 <-> ( sqrt ` ( y ., y ) ) = 0 ) ) | 
						
							| 46 | 42 | sqsqrtd |  |-  ( ( ph /\ y e. V ) -> ( ( sqrt ` ( y ., y ) ) ^ 2 ) = ( y ., y ) ) | 
						
							| 47 | 1 2 3 4 5 | phclm |  |-  ( ph -> W e. CMod ) | 
						
							| 48 | 3 | clm0 |  |-  ( W e. CMod -> 0 = ( 0g ` F ) ) | 
						
							| 49 | 47 48 | syl |  |-  ( ph -> 0 = ( 0g ` F ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ph /\ y e. V ) -> 0 = ( 0g ` F ) ) | 
						
							| 51 | 46 50 | eqeq12d |  |-  ( ( ph /\ y e. V ) -> ( ( ( sqrt ` ( y ., y ) ) ^ 2 ) = 0 <-> ( y ., y ) = ( 0g ` F ) ) ) | 
						
							| 52 | 45 51 | bitr3d |  |-  ( ( ph /\ y e. V ) -> ( ( sqrt ` ( y ., y ) ) = 0 <-> ( y ., y ) = ( 0g ` F ) ) ) | 
						
							| 53 |  | eqid |  |-  ( 0g ` F ) = ( 0g ` F ) | 
						
							| 54 | 3 6 2 53 13 | ipeq0 |  |-  ( ( W e. PreHil /\ y e. V ) -> ( ( y ., y ) = ( 0g ` F ) <-> y = ( 0g ` W ) ) ) | 
						
							| 55 | 4 54 | sylan |  |-  ( ( ph /\ y e. V ) -> ( ( y ., y ) = ( 0g ` F ) <-> y = ( 0g ` W ) ) ) | 
						
							| 56 | 28 52 55 | 3bitrd |  |-  ( ( ph /\ y e. V ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = 0 <-> y = ( 0g ` W ) ) ) | 
						
							| 57 | 4 | adantr |  |-  ( ( ph /\ ( y e. V /\ z e. V ) ) -> W e. PreHil ) | 
						
							| 58 | 34 | simp1d |  |-  ( ph -> F = ( CCfld |`s ( Base ` F ) ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ph /\ ( y e. V /\ z e. V ) ) -> F = ( CCfld |`s ( Base ` F ) ) ) | 
						
							| 60 |  | 3anass |  |-  ( ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) <-> ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) ) | 
						
							| 61 |  | simpr2 |  |-  ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> x e. RR ) | 
						
							| 62 | 61 | recnd |  |-  ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> x e. CC ) | 
						
							| 63 | 62 | sqrtcld |  |-  ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. CC ) | 
						
							| 64 | 7 63 | jca |  |-  ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) | 
						
							| 65 | 64 | ex |  |-  ( ph -> ( ( x e. K /\ x e. RR /\ 0 <_ x ) -> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) ) | 
						
							| 66 | 35 | eleq2d |  |-  ( ph -> ( x e. ( Base ` F ) <-> x e. ( K i^i CC ) ) ) | 
						
							| 67 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 68 |  | elin |  |-  ( x e. ( K i^i CC ) <-> ( x e. K /\ x e. CC ) ) | 
						
							| 69 | 68 | rbaib |  |-  ( x e. CC -> ( x e. ( K i^i CC ) <-> x e. K ) ) | 
						
							| 70 | 67 69 | syl |  |-  ( x e. RR -> ( x e. ( K i^i CC ) <-> x e. K ) ) | 
						
							| 71 | 66 70 | sylan9bb |  |-  ( ( ph /\ x e. RR ) -> ( x e. ( Base ` F ) <-> x e. K ) ) | 
						
							| 72 | 71 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ 0 <_ x ) ) -> ( x e. ( Base ` F ) <-> x e. K ) ) | 
						
							| 73 | 72 | ex |  |-  ( ph -> ( ( x e. RR /\ 0 <_ x ) -> ( x e. ( Base ` F ) <-> x e. K ) ) ) | 
						
							| 74 | 73 | pm5.32rd |  |-  ( ph -> ( ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) <-> ( x e. K /\ ( x e. RR /\ 0 <_ x ) ) ) ) | 
						
							| 75 |  | 3anass |  |-  ( ( x e. K /\ x e. RR /\ 0 <_ x ) <-> ( x e. K /\ ( x e. RR /\ 0 <_ x ) ) ) | 
						
							| 76 | 74 75 | bitr4di |  |-  ( ph -> ( ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) <-> ( x e. K /\ x e. RR /\ 0 <_ x ) ) ) | 
						
							| 77 | 35 | eleq2d |  |-  ( ph -> ( ( sqrt ` x ) e. ( Base ` F ) <-> ( sqrt ` x ) e. ( K i^i CC ) ) ) | 
						
							| 78 |  | elin |  |-  ( ( sqrt ` x ) e. ( K i^i CC ) <-> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) | 
						
							| 79 | 77 78 | bitrdi |  |-  ( ph -> ( ( sqrt ` x ) e. ( Base ` F ) <-> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) ) | 
						
							| 80 | 65 76 79 | 3imtr4d |  |-  ( ph -> ( ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) ) | 
						
							| 81 | 60 80 | biimtrid |  |-  ( ph -> ( ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) -> ( sqrt ` x ) e. ( Base ` F ) ) ) | 
						
							| 82 | 81 | imp |  |-  ( ( ph /\ ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) | 
						
							| 83 | 82 | adantlr |  |-  ( ( ( ph /\ ( y e. V /\ z e. V ) ) /\ ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) | 
						
							| 84 | 8 | adantlr |  |-  ( ( ( ph /\ ( y e. V /\ z e. V ) ) /\ x e. V ) -> 0 <_ ( x ., x ) ) | 
						
							| 85 |  | simprl |  |-  ( ( ph /\ ( y e. V /\ z e. V ) ) -> y e. V ) | 
						
							| 86 |  | simprr |  |-  ( ( ph /\ ( y e. V /\ z e. V ) ) -> z e. V ) | 
						
							| 87 | 1 2 3 57 59 6 83 84 29 12 85 86 | tcphcphlem1 |  |-  ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) <_ ( ( sqrt ` ( y ., y ) ) + ( sqrt ` ( z ., z ) ) ) ) | 
						
							| 88 | 2 12 | grpsubcl |  |-  ( ( W e. Grp /\ y e. V /\ z e. V ) -> ( y ( -g ` W ) z ) e. V ) | 
						
							| 89 | 88 | 3expb |  |-  ( ( W e. Grp /\ ( y e. V /\ z e. V ) ) -> ( y ( -g ` W ) z ) e. V ) | 
						
							| 90 | 17 89 | sylan |  |-  ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y ( -g ` W ) z ) e. V ) | 
						
							| 91 |  | oveq12 |  |-  ( ( x = ( y ( -g ` W ) z ) /\ x = ( y ( -g ` W ) z ) ) -> ( x ., x ) = ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) | 
						
							| 92 | 91 | anidms |  |-  ( x = ( y ( -g ` W ) z ) -> ( x ., x ) = ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) | 
						
							| 93 | 92 | fveq2d |  |-  ( x = ( y ( -g ` W ) z ) -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) ) | 
						
							| 94 | 93 24 25 | fvmpt3i |  |-  ( ( y ( -g ` W ) z ) e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` ( y ( -g ` W ) z ) ) = ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) ) | 
						
							| 95 | 90 94 | syl |  |-  ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` ( y ( -g ` W ) z ) ) = ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) ) | 
						
							| 96 |  | oveq12 |  |-  ( ( x = z /\ x = z ) -> ( x ., x ) = ( z ., z ) ) | 
						
							| 97 | 96 | anidms |  |-  ( x = z -> ( x ., x ) = ( z ., z ) ) | 
						
							| 98 | 97 | fveq2d |  |-  ( x = z -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( z ., z ) ) ) | 
						
							| 99 | 98 24 25 | fvmpt3i |  |-  ( z e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) = ( sqrt ` ( z ., z ) ) ) | 
						
							| 100 | 26 99 | oveqan12d |  |-  ( ( y e. V /\ z e. V ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) + ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) ) = ( ( sqrt ` ( y ., y ) ) + ( sqrt ` ( z ., z ) ) ) ) | 
						
							| 101 | 100 | adantl |  |-  ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) + ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) ) = ( ( sqrt ` ( y ., y ) ) + ( sqrt ` ( z ., z ) ) ) ) | 
						
							| 102 | 87 95 101 | 3brtr4d |  |-  ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` ( y ( -g ` W ) z ) ) <_ ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) + ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) ) ) | 
						
							| 103 | 11 2 12 13 17 20 56 102 | tngngpd |  |-  ( ph -> G e. NrmGrp ) | 
						
							| 104 |  | phllmod |  |-  ( G e. PreHil -> G e. LMod ) | 
						
							| 105 | 10 104 | syl |  |-  ( ph -> G e. LMod ) | 
						
							| 106 |  | cnnrg |  |-  CCfld e. NrmRing | 
						
							| 107 | 34 | simp3d |  |-  ( ph -> ( Base ` F ) e. ( SubRing ` CCfld ) ) | 
						
							| 108 |  | eqid |  |-  ( CCfld |`s ( Base ` F ) ) = ( CCfld |`s ( Base ` F ) ) | 
						
							| 109 | 108 | subrgnrg |  |-  ( ( CCfld e. NrmRing /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) -> ( CCfld |`s ( Base ` F ) ) e. NrmRing ) | 
						
							| 110 | 106 107 109 | sylancr |  |-  ( ph -> ( CCfld |`s ( Base ` F ) ) e. NrmRing ) | 
						
							| 111 | 58 110 | eqeltrd |  |-  ( ph -> F e. NrmRing ) | 
						
							| 112 | 103 105 111 | 3jca |  |-  ( ph -> ( G e. NrmGrp /\ G e. LMod /\ F e. NrmRing ) ) | 
						
							| 113 | 4 | adantr |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> W e. PreHil ) | 
						
							| 114 | 58 | adantr |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> F = ( CCfld |`s ( Base ` F ) ) ) | 
						
							| 115 | 82 | adantlr |  |-  ( ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) /\ ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) | 
						
							| 116 | 8 | adantlr |  |-  ( ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) /\ x e. V ) -> 0 <_ ( x ., x ) ) | 
						
							| 117 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 118 |  | simprl |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> y e. ( Base ` F ) ) | 
						
							| 119 |  | simprr |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> z e. V ) | 
						
							| 120 | 1 2 3 113 114 6 115 116 29 117 118 119 | tcphcphlem2 |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( sqrt ` ( ( y ( .s ` W ) z ) ., ( y ( .s ` W ) z ) ) ) = ( ( abs ` y ) x. ( sqrt ` ( z ., z ) ) ) ) | 
						
							| 121 | 2 3 117 29 | lmodvscl |  |-  ( ( W e. LMod /\ y e. ( Base ` F ) /\ z e. V ) -> ( y ( .s ` W ) z ) e. V ) | 
						
							| 122 | 121 | 3expb |  |-  ( ( W e. LMod /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( y ( .s ` W ) z ) e. V ) | 
						
							| 123 | 15 122 | sylan |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( y ( .s ` W ) z ) e. V ) | 
						
							| 124 |  | eqid |  |-  ( norm ` G ) = ( norm ` G ) | 
						
							| 125 | 1 124 2 6 | tcphnmval |  |-  ( ( W e. Grp /\ ( y ( .s ` W ) z ) e. V ) -> ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( sqrt ` ( ( y ( .s ` W ) z ) ., ( y ( .s ` W ) z ) ) ) ) | 
						
							| 126 | 17 123 125 | syl2an2r |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( sqrt ` ( ( y ( .s ` W ) z ) ., ( y ( .s ` W ) z ) ) ) ) | 
						
							| 127 | 114 | fveq2d |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( norm ` F ) = ( norm ` ( CCfld |`s ( Base ` F ) ) ) ) | 
						
							| 128 | 127 | fveq1d |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` F ) ` y ) = ( ( norm ` ( CCfld |`s ( Base ` F ) ) ) ` y ) ) | 
						
							| 129 |  | subrgsubg |  |-  ( ( Base ` F ) e. ( SubRing ` CCfld ) -> ( Base ` F ) e. ( SubGrp ` CCfld ) ) | 
						
							| 130 | 107 129 | syl |  |-  ( ph -> ( Base ` F ) e. ( SubGrp ` CCfld ) ) | 
						
							| 131 |  | cnfldnm |  |-  abs = ( norm ` CCfld ) | 
						
							| 132 |  | eqid |  |-  ( norm ` ( CCfld |`s ( Base ` F ) ) ) = ( norm ` ( CCfld |`s ( Base ` F ) ) ) | 
						
							| 133 | 108 131 132 | subgnm2 |  |-  ( ( ( Base ` F ) e. ( SubGrp ` CCfld ) /\ y e. ( Base ` F ) ) -> ( ( norm ` ( CCfld |`s ( Base ` F ) ) ) ` y ) = ( abs ` y ) ) | 
						
							| 134 | 130 118 133 | syl2an2r |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` ( CCfld |`s ( Base ` F ) ) ) ` y ) = ( abs ` y ) ) | 
						
							| 135 | 128 134 | eqtrd |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` F ) ` y ) = ( abs ` y ) ) | 
						
							| 136 | 1 124 2 6 | tcphnmval |  |-  ( ( W e. Grp /\ z e. V ) -> ( ( norm ` G ) ` z ) = ( sqrt ` ( z ., z ) ) ) | 
						
							| 137 | 17 119 136 | syl2an2r |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` G ) ` z ) = ( sqrt ` ( z ., z ) ) ) | 
						
							| 138 | 135 137 | oveq12d |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) = ( ( abs ` y ) x. ( sqrt ` ( z ., z ) ) ) ) | 
						
							| 139 | 120 126 138 | 3eqtr4d |  |-  ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) ) | 
						
							| 140 | 139 | ralrimivva |  |-  ( ph -> A. y e. ( Base ` F ) A. z e. V ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) ) | 
						
							| 141 | 1 2 | tcphbas |  |-  V = ( Base ` G ) | 
						
							| 142 | 1 117 | tcphvsca |  |-  ( .s ` W ) = ( .s ` G ) | 
						
							| 143 | 1 3 | tcphsca |  |-  F = ( Scalar ` G ) | 
						
							| 144 |  | eqid |  |-  ( norm ` F ) = ( norm ` F ) | 
						
							| 145 | 141 124 142 143 29 144 | isnlm |  |-  ( G e. NrmMod <-> ( ( G e. NrmGrp /\ G e. LMod /\ F e. NrmRing ) /\ A. y e. ( Base ` F ) A. z e. V ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) ) ) | 
						
							| 146 | 112 140 145 | sylanbrc |  |-  ( ph -> G e. NrmMod ) | 
						
							| 147 | 10 146 58 | 3jca |  |-  ( ph -> ( G e. PreHil /\ G e. NrmMod /\ F = ( CCfld |`s ( Base ` F ) ) ) ) | 
						
							| 148 |  | elin |  |-  ( x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) <-> ( x e. ( Base ` F ) /\ x e. ( 0 [,) +oo ) ) ) | 
						
							| 149 |  | elrege0 |  |-  ( x e. ( 0 [,) +oo ) <-> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 150 | 149 | anbi2i |  |-  ( ( x e. ( Base ` F ) /\ x e. ( 0 [,) +oo ) ) <-> ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) ) | 
						
							| 151 | 148 150 | bitri |  |-  ( x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) <-> ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) ) | 
						
							| 152 | 151 80 | biimtrid |  |-  ( ph -> ( x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) ) | 
						
							| 153 | 152 | ralrimiv |  |-  ( ph -> A. x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ( sqrt ` x ) e. ( Base ` F ) ) | 
						
							| 154 |  | sqrtf |  |-  sqrt : CC --> CC | 
						
							| 155 |  | ffun |  |-  ( sqrt : CC --> CC -> Fun sqrt ) | 
						
							| 156 | 154 155 | ax-mp |  |-  Fun sqrt | 
						
							| 157 |  | inss1 |  |-  ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ ( Base ` F ) | 
						
							| 158 | 157 37 | sstrid |  |-  ( ph -> ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ CC ) | 
						
							| 159 | 154 | fdmi |  |-  dom sqrt = CC | 
						
							| 160 | 158 159 | sseqtrrdi |  |-  ( ph -> ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ dom sqrt ) | 
						
							| 161 |  | funimass4 |  |-  ( ( Fun sqrt /\ ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ dom sqrt ) -> ( ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) <-> A. x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ( sqrt ` x ) e. ( Base ` F ) ) ) | 
						
							| 162 | 156 160 161 | sylancr |  |-  ( ph -> ( ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) <-> A. x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ( sqrt ` x ) e. ( Base ` F ) ) ) | 
						
							| 163 | 153 162 | mpbird |  |-  ( ph -> ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) ) | 
						
							| 164 | 43 | fmpttd |  |-  ( ph -> ( y e. V |-> ( sqrt ` ( y ., y ) ) ) : V --> CC ) | 
						
							| 165 | 1 2 6 | tcphval |  |-  G = ( W toNrmGrp ( y e. V |-> ( sqrt ` ( y ., y ) ) ) ) | 
						
							| 166 |  | cnex |  |-  CC e. _V | 
						
							| 167 | 165 2 166 | tngnm |  |-  ( ( W e. Grp /\ ( y e. V |-> ( sqrt ` ( y ., y ) ) ) : V --> CC ) -> ( y e. V |-> ( sqrt ` ( y ., y ) ) ) = ( norm ` G ) ) | 
						
							| 168 | 17 164 167 | syl2anc |  |-  ( ph -> ( y e. V |-> ( sqrt ` ( y ., y ) ) ) = ( norm ` G ) ) | 
						
							| 169 | 168 | eqcomd |  |-  ( ph -> ( norm ` G ) = ( y e. V |-> ( sqrt ` ( y ., y ) ) ) ) | 
						
							| 170 | 1 6 | tcphip |  |-  ., = ( .i ` G ) | 
						
							| 171 | 141 170 124 143 29 | iscph |  |-  ( G e. CPreHil <-> ( ( G e. PreHil /\ G e. NrmMod /\ F = ( CCfld |`s ( Base ` F ) ) ) /\ ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) /\ ( norm ` G ) = ( y e. V |-> ( sqrt ` ( y ., y ) ) ) ) ) | 
						
							| 172 | 147 163 169 171 | syl3anbrc |  |-  ( ph -> G e. CPreHil ) |