| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgnrg.h |
|- H = ( G |`s A ) |
| 2 |
|
nrgngp |
|- ( G e. NrmRing -> G e. NrmGrp ) |
| 3 |
|
subrgsubg |
|- ( A e. ( SubRing ` G ) -> A e. ( SubGrp ` G ) ) |
| 4 |
1
|
subgngp |
|- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> H e. NrmGrp ) |
| 5 |
2 3 4
|
syl2an |
|- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> H e. NrmGrp ) |
| 6 |
3
|
adantl |
|- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> A e. ( SubGrp ` G ) ) |
| 7 |
|
eqid |
|- ( norm ` G ) = ( norm ` G ) |
| 8 |
|
eqid |
|- ( norm ` H ) = ( norm ` H ) |
| 9 |
1 7 8
|
subgnm |
|- ( A e. ( SubGrp ` G ) -> ( norm ` H ) = ( ( norm ` G ) |` A ) ) |
| 10 |
6 9
|
syl |
|- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> ( norm ` H ) = ( ( norm ` G ) |` A ) ) |
| 11 |
|
eqid |
|- ( AbsVal ` G ) = ( AbsVal ` G ) |
| 12 |
7 11
|
nrgabv |
|- ( G e. NrmRing -> ( norm ` G ) e. ( AbsVal ` G ) ) |
| 13 |
|
eqid |
|- ( AbsVal ` H ) = ( AbsVal ` H ) |
| 14 |
11 1 13
|
abvres |
|- ( ( ( norm ` G ) e. ( AbsVal ` G ) /\ A e. ( SubRing ` G ) ) -> ( ( norm ` G ) |` A ) e. ( AbsVal ` H ) ) |
| 15 |
12 14
|
sylan |
|- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> ( ( norm ` G ) |` A ) e. ( AbsVal ` H ) ) |
| 16 |
10 15
|
eqeltrd |
|- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> ( norm ` H ) e. ( AbsVal ` H ) ) |
| 17 |
8 13
|
isnrg |
|- ( H e. NrmRing <-> ( H e. NrmGrp /\ ( norm ` H ) e. ( AbsVal ` H ) ) ) |
| 18 |
5 16 17
|
sylanbrc |
|- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> H e. NrmRing ) |