| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abvres.a |
|- A = ( AbsVal ` R ) |
| 2 |
|
abvres.s |
|- S = ( R |`s C ) |
| 3 |
|
abvres.b |
|- B = ( AbsVal ` S ) |
| 4 |
3
|
a1i |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> B = ( AbsVal ` S ) ) |
| 5 |
2
|
subrgbas |
|- ( C e. ( SubRing ` R ) -> C = ( Base ` S ) ) |
| 6 |
5
|
adantl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> C = ( Base ` S ) ) |
| 7 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 8 |
2 7
|
ressplusg |
|- ( C e. ( SubRing ` R ) -> ( +g ` R ) = ( +g ` S ) ) |
| 9 |
8
|
adantl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( +g ` R ) = ( +g ` S ) ) |
| 10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 11 |
2 10
|
ressmulr |
|- ( C e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
| 12 |
11
|
adantl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( .r ` R ) = ( .r ` S ) ) |
| 13 |
|
subrgsubg |
|- ( C e. ( SubRing ` R ) -> C e. ( SubGrp ` R ) ) |
| 14 |
13
|
adantl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> C e. ( SubGrp ` R ) ) |
| 15 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 16 |
2 15
|
subg0 |
|- ( C e. ( SubGrp ` R ) -> ( 0g ` R ) = ( 0g ` S ) ) |
| 17 |
14 16
|
syl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( 0g ` R ) = ( 0g ` S ) ) |
| 18 |
2
|
subrgring |
|- ( C e. ( SubRing ` R ) -> S e. Ring ) |
| 19 |
18
|
adantl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> S e. Ring ) |
| 20 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 21 |
1 20
|
abvf |
|- ( F e. A -> F : ( Base ` R ) --> RR ) |
| 22 |
20
|
subrgss |
|- ( C e. ( SubRing ` R ) -> C C_ ( Base ` R ) ) |
| 23 |
|
fssres |
|- ( ( F : ( Base ` R ) --> RR /\ C C_ ( Base ` R ) ) -> ( F |` C ) : C --> RR ) |
| 24 |
21 22 23
|
syl2an |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F |` C ) : C --> RR ) |
| 25 |
15
|
subg0cl |
|- ( C e. ( SubGrp ` R ) -> ( 0g ` R ) e. C ) |
| 26 |
|
fvres |
|- ( ( 0g ` R ) e. C -> ( ( F |` C ) ` ( 0g ` R ) ) = ( F ` ( 0g ` R ) ) ) |
| 27 |
14 25 26
|
3syl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( ( F |` C ) ` ( 0g ` R ) ) = ( F ` ( 0g ` R ) ) ) |
| 28 |
1 15
|
abv0 |
|- ( F e. A -> ( F ` ( 0g ` R ) ) = 0 ) |
| 29 |
28
|
adantr |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
| 30 |
27 29
|
eqtrd |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( ( F |` C ) ` ( 0g ` R ) ) = 0 ) |
| 31 |
|
simp1l |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> F e. A ) |
| 32 |
22
|
adantl |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> C C_ ( Base ` R ) ) |
| 33 |
32
|
sselda |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C ) -> x e. ( Base ` R ) ) |
| 34 |
33
|
3adant3 |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> x e. ( Base ` R ) ) |
| 35 |
|
simp3 |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> x =/= ( 0g ` R ) ) |
| 36 |
1 20 15
|
abvgt0 |
|- ( ( F e. A /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> 0 < ( F ` x ) ) |
| 37 |
31 34 35 36
|
syl3anc |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> 0 < ( F ` x ) ) |
| 38 |
|
fvres |
|- ( x e. C -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
| 39 |
38
|
3ad2ant2 |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
| 40 |
37 39
|
breqtrrd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> 0 < ( ( F |` C ) ` x ) ) |
| 41 |
|
simp1l |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> F e. A ) |
| 42 |
|
simp1r |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> C e. ( SubRing ` R ) ) |
| 43 |
42 22
|
syl |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> C C_ ( Base ` R ) ) |
| 44 |
|
simp2l |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> x e. C ) |
| 45 |
43 44
|
sseldd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> x e. ( Base ` R ) ) |
| 46 |
|
simp3l |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> y e. C ) |
| 47 |
43 46
|
sseldd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> y e. ( Base ` R ) ) |
| 48 |
1 20 10
|
abvmul |
|- ( ( F e. A /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 49 |
41 45 47 48
|
syl3anc |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 50 |
10
|
subrgmcl |
|- ( ( C e. ( SubRing ` R ) /\ x e. C /\ y e. C ) -> ( x ( .r ` R ) y ) e. C ) |
| 51 |
42 44 46 50
|
syl3anc |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( x ( .r ` R ) y ) e. C ) |
| 52 |
51
|
fvresd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( .r ` R ) y ) ) = ( F ` ( x ( .r ` R ) y ) ) ) |
| 53 |
44
|
fvresd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
| 54 |
46
|
fvresd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` y ) = ( F ` y ) ) |
| 55 |
53 54
|
oveq12d |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( ( F |` C ) ` x ) x. ( ( F |` C ) ` y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 56 |
49 52 55
|
3eqtr4d |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( .r ` R ) y ) ) = ( ( ( F |` C ) ` x ) x. ( ( F |` C ) ` y ) ) ) |
| 57 |
1 20 7
|
abvtri |
|- ( ( F e. A /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 58 |
41 45 47 57
|
syl3anc |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 59 |
7
|
subrgacl |
|- ( ( C e. ( SubRing ` R ) /\ x e. C /\ y e. C ) -> ( x ( +g ` R ) y ) e. C ) |
| 60 |
42 44 46 59
|
syl3anc |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( x ( +g ` R ) y ) e. C ) |
| 61 |
60
|
fvresd |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( +g ` R ) y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) |
| 62 |
53 54
|
oveq12d |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( ( F |` C ) ` x ) + ( ( F |` C ) ` y ) ) = ( ( F ` x ) + ( F ` y ) ) ) |
| 63 |
58 61 62
|
3brtr4d |
|- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( +g ` R ) y ) ) <_ ( ( ( F |` C ) ` x ) + ( ( F |` C ) ` y ) ) ) |
| 64 |
4 6 9 12 17 19 24 30 40 56 63
|
isabvd |
|- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F |` C ) e. B ) |