| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abvtriv.a |
|- A = ( AbsVal ` R ) |
| 2 |
|
abvtriv.b |
|- B = ( Base ` R ) |
| 3 |
|
abvtriv.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
abvtriv.f |
|- F = ( x e. B |-> if ( x = .0. , 0 , 1 ) ) |
| 5 |
|
abvtrivd.1 |
|- .x. = ( .r ` R ) |
| 6 |
|
abvtrivd.2 |
|- ( ph -> R e. Ring ) |
| 7 |
|
abvtrivd.3 |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y .x. z ) =/= .0. ) |
| 8 |
1
|
a1i |
|- ( ph -> A = ( AbsVal ` R ) ) |
| 9 |
2
|
a1i |
|- ( ph -> B = ( Base ` R ) ) |
| 10 |
|
eqidd |
|- ( ph -> ( +g ` R ) = ( +g ` R ) ) |
| 11 |
5
|
a1i |
|- ( ph -> .x. = ( .r ` R ) ) |
| 12 |
3
|
a1i |
|- ( ph -> .0. = ( 0g ` R ) ) |
| 13 |
|
0re |
|- 0 e. RR |
| 14 |
|
1re |
|- 1 e. RR |
| 15 |
13 14
|
ifcli |
|- if ( x = .0. , 0 , 1 ) e. RR |
| 16 |
15
|
a1i |
|- ( ( ph /\ x e. B ) -> if ( x = .0. , 0 , 1 ) e. RR ) |
| 17 |
16 4
|
fmptd |
|- ( ph -> F : B --> RR ) |
| 18 |
2 3
|
ring0cl |
|- ( R e. Ring -> .0. e. B ) |
| 19 |
|
iftrue |
|- ( x = .0. -> if ( x = .0. , 0 , 1 ) = 0 ) |
| 20 |
|
c0ex |
|- 0 e. _V |
| 21 |
19 4 20
|
fvmpt |
|- ( .0. e. B -> ( F ` .0. ) = 0 ) |
| 22 |
6 18 21
|
3syl |
|- ( ph -> ( F ` .0. ) = 0 ) |
| 23 |
|
0lt1 |
|- 0 < 1 |
| 24 |
|
eqeq1 |
|- ( x = y -> ( x = .0. <-> y = .0. ) ) |
| 25 |
24
|
ifbid |
|- ( x = y -> if ( x = .0. , 0 , 1 ) = if ( y = .0. , 0 , 1 ) ) |
| 26 |
|
1ex |
|- 1 e. _V |
| 27 |
20 26
|
ifex |
|- if ( y = .0. , 0 , 1 ) e. _V |
| 28 |
25 4 27
|
fvmpt |
|- ( y e. B -> ( F ` y ) = if ( y = .0. , 0 , 1 ) ) |
| 29 |
|
ifnefalse |
|- ( y =/= .0. -> if ( y = .0. , 0 , 1 ) = 1 ) |
| 30 |
28 29
|
sylan9eq |
|- ( ( y e. B /\ y =/= .0. ) -> ( F ` y ) = 1 ) |
| 31 |
30
|
3adant1 |
|- ( ( ph /\ y e. B /\ y =/= .0. ) -> ( F ` y ) = 1 ) |
| 32 |
23 31
|
breqtrrid |
|- ( ( ph /\ y e. B /\ y =/= .0. ) -> 0 < ( F ` y ) ) |
| 33 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 34 |
33
|
eqcomi |
|- 1 = ( 1 x. 1 ) |
| 35 |
6
|
3ad2ant1 |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> R e. Ring ) |
| 36 |
|
simp2l |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> y e. B ) |
| 37 |
|
simp3l |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> z e. B ) |
| 38 |
2 5
|
ringcl |
|- ( ( R e. Ring /\ y e. B /\ z e. B ) -> ( y .x. z ) e. B ) |
| 39 |
35 36 37 38
|
syl3anc |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y .x. z ) e. B ) |
| 40 |
|
eqeq1 |
|- ( x = ( y .x. z ) -> ( x = .0. <-> ( y .x. z ) = .0. ) ) |
| 41 |
40
|
ifbid |
|- ( x = ( y .x. z ) -> if ( x = .0. , 0 , 1 ) = if ( ( y .x. z ) = .0. , 0 , 1 ) ) |
| 42 |
20 26
|
ifex |
|- if ( ( y .x. z ) = .0. , 0 , 1 ) e. _V |
| 43 |
41 4 42
|
fvmpt |
|- ( ( y .x. z ) e. B -> ( F ` ( y .x. z ) ) = if ( ( y .x. z ) = .0. , 0 , 1 ) ) |
| 44 |
39 43
|
syl |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y .x. z ) ) = if ( ( y .x. z ) = .0. , 0 , 1 ) ) |
| 45 |
7
|
neneqd |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> -. ( y .x. z ) = .0. ) |
| 46 |
45
|
iffalsed |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> if ( ( y .x. z ) = .0. , 0 , 1 ) = 1 ) |
| 47 |
44 46
|
eqtrd |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y .x. z ) ) = 1 ) |
| 48 |
36 28
|
syl |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` y ) = if ( y = .0. , 0 , 1 ) ) |
| 49 |
|
simp2r |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> y =/= .0. ) |
| 50 |
49
|
neneqd |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> -. y = .0. ) |
| 51 |
50
|
iffalsed |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> if ( y = .0. , 0 , 1 ) = 1 ) |
| 52 |
48 51
|
eqtrd |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` y ) = 1 ) |
| 53 |
|
eqeq1 |
|- ( x = z -> ( x = .0. <-> z = .0. ) ) |
| 54 |
53
|
ifbid |
|- ( x = z -> if ( x = .0. , 0 , 1 ) = if ( z = .0. , 0 , 1 ) ) |
| 55 |
20 26
|
ifex |
|- if ( z = .0. , 0 , 1 ) e. _V |
| 56 |
54 4 55
|
fvmpt |
|- ( z e. B -> ( F ` z ) = if ( z = .0. , 0 , 1 ) ) |
| 57 |
37 56
|
syl |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` z ) = if ( z = .0. , 0 , 1 ) ) |
| 58 |
|
simp3r |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> z =/= .0. ) |
| 59 |
58
|
neneqd |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> -. z = .0. ) |
| 60 |
59
|
iffalsed |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> if ( z = .0. , 0 , 1 ) = 1 ) |
| 61 |
57 60
|
eqtrd |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` z ) = 1 ) |
| 62 |
52 61
|
oveq12d |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( ( F ` y ) x. ( F ` z ) ) = ( 1 x. 1 ) ) |
| 63 |
34 47 62
|
3eqtr4a |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y .x. z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) |
| 64 |
|
breq1 |
|- ( 0 = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) -> ( 0 <_ 2 <-> if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ 2 ) ) |
| 65 |
|
breq1 |
|- ( 1 = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) -> ( 1 <_ 2 <-> if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ 2 ) ) |
| 66 |
|
0le2 |
|- 0 <_ 2 |
| 67 |
|
1le2 |
|- 1 <_ 2 |
| 68 |
64 65 66 67
|
keephyp |
|- if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ 2 |
| 69 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 70 |
68 69
|
breqtri |
|- if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ ( 1 + 1 ) |
| 71 |
70
|
a1i |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ ( 1 + 1 ) ) |
| 72 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 73 |
6 72
|
syl |
|- ( ph -> R e. Grp ) |
| 74 |
73
|
3ad2ant1 |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> R e. Grp ) |
| 75 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 76 |
2 75
|
grpcl |
|- ( ( R e. Grp /\ y e. B /\ z e. B ) -> ( y ( +g ` R ) z ) e. B ) |
| 77 |
74 36 37 76
|
syl3anc |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( +g ` R ) z ) e. B ) |
| 78 |
|
eqeq1 |
|- ( x = ( y ( +g ` R ) z ) -> ( x = .0. <-> ( y ( +g ` R ) z ) = .0. ) ) |
| 79 |
78
|
ifbid |
|- ( x = ( y ( +g ` R ) z ) -> if ( x = .0. , 0 , 1 ) = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) ) |
| 80 |
20 26
|
ifex |
|- if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) e. _V |
| 81 |
79 4 80
|
fvmpt |
|- ( ( y ( +g ` R ) z ) e. B -> ( F ` ( y ( +g ` R ) z ) ) = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) ) |
| 82 |
77 81
|
syl |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y ( +g ` R ) z ) ) = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) ) |
| 83 |
52 61
|
oveq12d |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( ( F ` y ) + ( F ` z ) ) = ( 1 + 1 ) ) |
| 84 |
71 82 83
|
3brtr4d |
|- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y ( +g ` R ) z ) ) <_ ( ( F ` y ) + ( F ` z ) ) ) |
| 85 |
8 9 10 11 12 6 17 22 32 63 84
|
isabvd |
|- ( ph -> F e. A ) |