| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tngnrg.t |
|- T = ( R toNrmGrp F ) |
| 2 |
|
tngnrg.a |
|- A = ( AbsVal ` R ) |
| 3 |
2
|
abvrcl |
|- ( F e. A -> R e. Ring ) |
| 4 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 5 |
3 4
|
syl |
|- ( F e. A -> R e. Grp ) |
| 6 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 7 |
1 6
|
tngds |
|- ( F e. A -> ( F o. ( -g ` R ) ) = ( dist ` T ) ) |
| 8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 9 |
8 2 6
|
abvmet |
|- ( F e. A -> ( F o. ( -g ` R ) ) e. ( Met ` ( Base ` R ) ) ) |
| 10 |
7 9
|
eqeltrrd |
|- ( F e. A -> ( dist ` T ) e. ( Met ` ( Base ` R ) ) ) |
| 11 |
2 8
|
abvf |
|- ( F e. A -> F : ( Base ` R ) --> RR ) |
| 12 |
|
eqid |
|- ( dist ` T ) = ( dist ` T ) |
| 13 |
1 8 12
|
tngngp2 |
|- ( F : ( Base ` R ) --> RR -> ( T e. NrmGrp <-> ( R e. Grp /\ ( dist ` T ) e. ( Met ` ( Base ` R ) ) ) ) ) |
| 14 |
11 13
|
syl |
|- ( F e. A -> ( T e. NrmGrp <-> ( R e. Grp /\ ( dist ` T ) e. ( Met ` ( Base ` R ) ) ) ) ) |
| 15 |
5 10 14
|
mpbir2and |
|- ( F e. A -> T e. NrmGrp ) |
| 16 |
|
reex |
|- RR e. _V |
| 17 |
1 8 16
|
tngnm |
|- ( ( R e. Grp /\ F : ( Base ` R ) --> RR ) -> F = ( norm ` T ) ) |
| 18 |
5 11 17
|
syl2anc |
|- ( F e. A -> F = ( norm ` T ) ) |
| 19 |
|
eqidd |
|- ( F e. A -> ( Base ` R ) = ( Base ` R ) ) |
| 20 |
1 8
|
tngbas |
|- ( F e. A -> ( Base ` R ) = ( Base ` T ) ) |
| 21 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 22 |
1 21
|
tngplusg |
|- ( F e. A -> ( +g ` R ) = ( +g ` T ) ) |
| 23 |
22
|
oveqdr |
|- ( ( F e. A /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` T ) y ) ) |
| 24 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 25 |
1 24
|
tngmulr |
|- ( F e. A -> ( .r ` R ) = ( .r ` T ) ) |
| 26 |
25
|
oveqdr |
|- ( ( F e. A /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` T ) y ) ) |
| 27 |
19 20 23 26
|
abvpropd |
|- ( F e. A -> ( AbsVal ` R ) = ( AbsVal ` T ) ) |
| 28 |
2 27
|
eqtrid |
|- ( F e. A -> A = ( AbsVal ` T ) ) |
| 29 |
18 28
|
eleq12d |
|- ( F e. A -> ( F e. A <-> ( norm ` T ) e. ( AbsVal ` T ) ) ) |
| 30 |
29
|
ibi |
|- ( F e. A -> ( norm ` T ) e. ( AbsVal ` T ) ) |
| 31 |
|
eqid |
|- ( norm ` T ) = ( norm ` T ) |
| 32 |
|
eqid |
|- ( AbsVal ` T ) = ( AbsVal ` T ) |
| 33 |
31 32
|
isnrg |
|- ( T e. NrmRing <-> ( T e. NrmGrp /\ ( norm ` T ) e. ( AbsVal ` T ) ) ) |
| 34 |
15 30 33
|
sylanbrc |
|- ( F e. A -> T e. NrmRing ) |