Metamath Proof Explorer


Theorem tngmulr

Description: The ring multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses tngbas.t
|- T = ( G toNrmGrp N )
tngmulr.2
|- .x. = ( .r ` G )
Assertion tngmulr
|- ( N e. V -> .x. = ( .r ` T ) )

Proof

Step Hyp Ref Expression
1 tngbas.t
 |-  T = ( G toNrmGrp N )
2 tngmulr.2
 |-  .x. = ( .r ` G )
3 df-mulr
 |-  .r = Slot 3
4 3nn
 |-  3 e. NN
5 3lt9
 |-  3 < 9
6 1 3 4 5 tnglem
 |-  ( N e. V -> ( .r ` G ) = ( .r ` T ) )
7 2 6 syl5eq
 |-  ( N e. V -> .x. = ( .r ` T ) )