Metamath Proof Explorer


Theorem tngmulr

Description: The ring multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
tngmulr.2 · = ( .r𝐺 )
Assertion tngmulr ( 𝑁𝑉· = ( .r𝑇 ) )

Proof

Step Hyp Ref Expression
1 tngbas.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
2 tngmulr.2 · = ( .r𝐺 )
3 mulrid .r = Slot ( .r ‘ ndx )
4 tsetndxnmulrndx ( TopSet ‘ ndx ) ≠ ( .r ‘ ndx )
5 4 necomi ( .r ‘ ndx ) ≠ ( TopSet ‘ ndx )
6 dsndxnmulrndx ( dist ‘ ndx ) ≠ ( .r ‘ ndx )
7 6 necomi ( .r ‘ ndx ) ≠ ( dist ‘ ndx )
8 1 3 5 7 tnglem ( 𝑁𝑉 → ( .r𝐺 ) = ( .r𝑇 ) )
9 2 8 syl5eq ( 𝑁𝑉· = ( .r𝑇 ) )