Description: The ring multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
tngmulr.2 | ⊢ · = ( .r ‘ 𝐺 ) | ||
Assertion | tngmulr | ⊢ ( 𝑁 ∈ 𝑉 → · = ( .r ‘ 𝑇 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
2 | tngmulr.2 | ⊢ · = ( .r ‘ 𝐺 ) | |
3 | mulrid | ⊢ .r = Slot ( .r ‘ ndx ) | |
4 | tsetndxnmulrndx | ⊢ ( TopSet ‘ ndx ) ≠ ( .r ‘ ndx ) | |
5 | 4 | necomi | ⊢ ( .r ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
6 | dsndxnmulrndx | ⊢ ( dist ‘ ndx ) ≠ ( .r ‘ ndx ) | |
7 | 6 | necomi | ⊢ ( .r ‘ ndx ) ≠ ( dist ‘ ndx ) |
8 | 1 3 5 7 | tnglem | ⊢ ( 𝑁 ∈ 𝑉 → ( .r ‘ 𝐺 ) = ( .r ‘ 𝑇 ) ) |
9 | 2 8 | syl5eq | ⊢ ( 𝑁 ∈ 𝑉 → · = ( .r ‘ 𝑇 ) ) |