Metamath Proof Explorer


Theorem tsetndxnmulrndx

Description: The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024)

Ref Expression
Assertion tsetndxnmulrndx ( TopSet ‘ ndx ) ≠ ( .r ‘ ndx )

Proof

Step Hyp Ref Expression
1 3re 3 ∈ ℝ
2 3lt9 3 < 9
3 1 2 gtneii 9 ≠ 3
4 tsetndx ( TopSet ‘ ndx ) = 9
5 mulrndx ( .r ‘ ndx ) = 3
6 4 5 neeq12i ( ( TopSet ‘ ndx ) ≠ ( .r ‘ ndx ) ↔ 9 ≠ 3 )
7 3 6 mpbir ( TopSet ‘ ndx ) ≠ ( .r ‘ ndx )