Step |
Hyp |
Ref |
Expression |
1 |
|
tngbas.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
2 |
|
tnglem.e |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
3 |
|
tnglem.t |
⊢ ( 𝐸 ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
4 |
|
tnglem.d |
⊢ ( 𝐸 ‘ ndx ) ≠ ( dist ‘ ndx ) |
5 |
2 4
|
setsnid |
⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) ) |
6 |
2 3
|
setsnid |
⊢ ( 𝐸 ‘ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) |
7 |
5 6
|
eqtri |
⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) |
8 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
9 |
|
eqid |
⊢ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) |
10 |
|
eqid |
⊢ ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) = ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) |
11 |
1 8 9 10
|
tngval |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → 𝑇 = ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑇 ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) ) |
13 |
7 12
|
eqtr4id |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑇 ) ) |
14 |
2
|
str0 |
⊢ ∅ = ( 𝐸 ‘ ∅ ) |
15 |
14
|
eqcomi |
⊢ ( 𝐸 ‘ ∅ ) = ∅ |
16 |
|
reldmtng |
⊢ Rel dom toNrmGrp |
17 |
15 1 16
|
oveqprc |
⊢ ( ¬ 𝐺 ∈ V → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑇 ) ) |
18 |
17
|
adantr |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑇 ) ) |
19 |
13 18
|
pm2.61ian |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑇 ) ) |