Metamath Proof Explorer


Theorem tnglem

Description: Lemma for tngbas and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
tnglem.e 𝐸 = Slot ( 𝐸 ‘ ndx )
tnglem.t ( 𝐸 ‘ ndx ) ≠ ( TopSet ‘ ndx )
tnglem.d ( 𝐸 ‘ ndx ) ≠ ( dist ‘ ndx )
Assertion tnglem ( 𝑁𝑉 → ( 𝐸𝐺 ) = ( 𝐸𝑇 ) )

Proof

Step Hyp Ref Expression
1 tngbas.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
2 tnglem.e 𝐸 = Slot ( 𝐸 ‘ ndx )
3 tnglem.t ( 𝐸 ‘ ndx ) ≠ ( TopSet ‘ ndx )
4 tnglem.d ( 𝐸 ‘ ndx ) ≠ ( dist ‘ ndx )
5 2 4 setsnid ( 𝐸𝐺 ) = ( 𝐸 ‘ ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g𝐺 ) ) ⟩ ) )
6 2 3 setsnid ( 𝐸 ‘ ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g𝐺 ) ) ⟩ ) ) = ( 𝐸 ‘ ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g𝐺 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g𝐺 ) ) ) ⟩ ) )
7 5 6 eqtri ( 𝐸𝐺 ) = ( 𝐸 ‘ ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g𝐺 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g𝐺 ) ) ) ⟩ ) )
8 eqid ( -g𝐺 ) = ( -g𝐺 )
9 eqid ( 𝑁 ∘ ( -g𝐺 ) ) = ( 𝑁 ∘ ( -g𝐺 ) )
10 eqid ( MetOpen ‘ ( 𝑁 ∘ ( -g𝐺 ) ) ) = ( MetOpen ‘ ( 𝑁 ∘ ( -g𝐺 ) ) )
11 1 8 9 10 tngval ( ( 𝐺 ∈ V ∧ 𝑁𝑉 ) → 𝑇 = ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g𝐺 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g𝐺 ) ) ) ⟩ ) )
12 11 fveq2d ( ( 𝐺 ∈ V ∧ 𝑁𝑉 ) → ( 𝐸𝑇 ) = ( 𝐸 ‘ ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g𝐺 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g𝐺 ) ) ) ⟩ ) ) )
13 7 12 eqtr4id ( ( 𝐺 ∈ V ∧ 𝑁𝑉 ) → ( 𝐸𝐺 ) = ( 𝐸𝑇 ) )
14 2 str0 ∅ = ( 𝐸 ‘ ∅ )
15 14 eqcomi ( 𝐸 ‘ ∅ ) = ∅
16 reldmtng Rel dom toNrmGrp
17 15 1 16 oveqprc ( ¬ 𝐺 ∈ V → ( 𝐸𝐺 ) = ( 𝐸𝑇 ) )
18 17 adantr ( ( ¬ 𝐺 ∈ V ∧ 𝑁𝑉 ) → ( 𝐸𝐺 ) = ( 𝐸𝑇 ) )
19 13 18 pm2.61ian ( 𝑁𝑉 → ( 𝐸𝐺 ) = ( 𝐸𝑇 ) )