Metamath Proof Explorer


Theorem tnglem

Description: Lemma for tngbas and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tnglem.e E = Slot E ndx
tnglem.t E ndx TopSet ndx
tnglem.d E ndx dist ndx
Assertion tnglem N V E G = E T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tnglem.e E = Slot E ndx
3 tnglem.t E ndx TopSet ndx
4 tnglem.d E ndx dist ndx
5 2 4 setsnid E G = E G sSet dist ndx N - G
6 2 3 setsnid E G sSet dist ndx N - G = E G sSet dist ndx N - G sSet TopSet ndx MetOpen N - G
7 5 6 eqtri E G = E G sSet dist ndx N - G sSet TopSet ndx MetOpen N - G
8 eqid - G = - G
9 eqid N - G = N - G
10 eqid MetOpen N - G = MetOpen N - G
11 1 8 9 10 tngval G V N V T = G sSet dist ndx N - G sSet TopSet ndx MetOpen N - G
12 11 fveq2d G V N V E T = E G sSet dist ndx N - G sSet TopSet ndx MetOpen N - G
13 7 12 eqtr4id G V N V E G = E T
14 2 str0 = E
15 14 eqcomi E =
16 reldmtng Rel dom toNrmGrp
17 15 1 16 oveqprc ¬ G V E G = E T
18 17 adantr ¬ G V N V E G = E T
19 13 18 pm2.61ian N V E G = E T