Metamath Proof Explorer


Theorem tngbas

Description: The base set of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngbas.2 B = Base G
Assertion tngbas N V B = Base T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngbas.2 B = Base G
3 baseid Base = Slot Base ndx
4 tsetndxnbasendx TopSet ndx Base ndx
5 4 necomi Base ndx TopSet ndx
6 dsndxnbasendx dist ndx Base ndx
7 6 necomi Base ndx dist ndx
8 1 3 5 7 tnglem N V Base G = Base T
9 2 8 syl5eq N V B = Base T