Metamath Proof Explorer


Theorem tngbas

Description: The base set of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t
|- T = ( G toNrmGrp N )
tngbas.2
|- B = ( Base ` G )
Assertion tngbas
|- ( N e. V -> B = ( Base ` T ) )

Proof

Step Hyp Ref Expression
1 tngbas.t
 |-  T = ( G toNrmGrp N )
2 tngbas.2
 |-  B = ( Base ` G )
3 baseid
 |-  Base = Slot ( Base ` ndx )
4 tsetndxnbasendx
 |-  ( TopSet ` ndx ) =/= ( Base ` ndx )
5 4 necomi
 |-  ( Base ` ndx ) =/= ( TopSet ` ndx )
6 dsndxnbasendx
 |-  ( dist ` ndx ) =/= ( Base ` ndx )
7 6 necomi
 |-  ( Base ` ndx ) =/= ( dist ` ndx )
8 1 3 5 7 tnglem
 |-  ( N e. V -> ( Base ` G ) = ( Base ` T ) )
9 2 8 syl5eq
 |-  ( N e. V -> B = ( Base ` T ) )