Step |
Hyp |
Ref |
Expression |
1 |
|
tngbas.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
2 |
|
tnglemOLD.2 |
⊢ 𝐸 = Slot 𝐾 |
3 |
|
tnglemOLD.3 |
⊢ 𝐾 ∈ ℕ |
4 |
|
tnglemOLD.4 |
⊢ 𝐾 < 9 |
5 |
2 3
|
ndxid |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
6 |
2 3
|
ndxarg |
⊢ ( 𝐸 ‘ ndx ) = 𝐾 |
7 |
3
|
nnrei |
⊢ 𝐾 ∈ ℝ |
8 |
6 7
|
eqeltri |
⊢ ( 𝐸 ‘ ndx ) ∈ ℝ |
9 |
6 4
|
eqbrtri |
⊢ ( 𝐸 ‘ ndx ) < 9 |
10 |
|
1nn |
⊢ 1 ∈ ℕ |
11 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
12 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
13 |
|
9lt10 |
⊢ 9 < ; 1 0 |
14 |
10 11 12 13
|
declti |
⊢ 9 < ; 1 2 |
15 |
|
9re |
⊢ 9 ∈ ℝ |
16 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
17 |
16 11
|
deccl |
⊢ ; 1 2 ∈ ℕ0 |
18 |
17
|
nn0rei |
⊢ ; 1 2 ∈ ℝ |
19 |
8 15 18
|
lttri |
⊢ ( ( ( 𝐸 ‘ ndx ) < 9 ∧ 9 < ; 1 2 ) → ( 𝐸 ‘ ndx ) < ; 1 2 ) |
20 |
9 14 19
|
mp2an |
⊢ ( 𝐸 ‘ ndx ) < ; 1 2 |
21 |
8 20
|
ltneii |
⊢ ( 𝐸 ‘ ndx ) ≠ ; 1 2 |
22 |
|
dsndx |
⊢ ( dist ‘ ndx ) = ; 1 2 |
23 |
21 22
|
neeqtrri |
⊢ ( 𝐸 ‘ ndx ) ≠ ( dist ‘ ndx ) |
24 |
5 23
|
setsnid |
⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) ) |
25 |
8 9
|
ltneii |
⊢ ( 𝐸 ‘ ndx ) ≠ 9 |
26 |
|
tsetndx |
⊢ ( TopSet ‘ ndx ) = 9 |
27 |
25 26
|
neeqtrri |
⊢ ( 𝐸 ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
28 |
5 27
|
setsnid |
⊢ ( 𝐸 ‘ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) |
29 |
24 28
|
eqtri |
⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) |
30 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
31 |
|
eqid |
⊢ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) |
32 |
|
eqid |
⊢ ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) = ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) |
33 |
1 30 31 32
|
tngval |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → 𝑇 = ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) |
34 |
33
|
fveq2d |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑇 ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) ) |
35 |
29 34
|
eqtr4id |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑇 ) ) |
36 |
2
|
str0 |
⊢ ∅ = ( 𝐸 ‘ ∅ ) |
37 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( 𝐸 ‘ 𝐺 ) = ∅ ) |
38 |
37
|
adantr |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ‘ 𝐺 ) = ∅ ) |
39 |
|
reldmtng |
⊢ Rel dom toNrmGrp |
40 |
39
|
ovprc1 |
⊢ ( ¬ 𝐺 ∈ V → ( 𝐺 toNrmGrp 𝑁 ) = ∅ ) |
41 |
40
|
adantr |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 toNrmGrp 𝑁 ) = ∅ ) |
42 |
1 41
|
syl5eq |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → 𝑇 = ∅ ) |
43 |
42
|
fveq2d |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑇 ) = ( 𝐸 ‘ ∅ ) ) |
44 |
36 38 43
|
3eqtr4a |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑇 ) ) |
45 |
35 44
|
pm2.61ian |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑇 ) ) |