Step |
Hyp |
Ref |
Expression |
1 |
|
tngbas.t |
|- T = ( G toNrmGrp N ) |
2 |
|
tnglemOLD.2 |
|- E = Slot K |
3 |
|
tnglemOLD.3 |
|- K e. NN |
4 |
|
tnglemOLD.4 |
|- K < 9 |
5 |
2 3
|
ndxid |
|- E = Slot ( E ` ndx ) |
6 |
2 3
|
ndxarg |
|- ( E ` ndx ) = K |
7 |
3
|
nnrei |
|- K e. RR |
8 |
6 7
|
eqeltri |
|- ( E ` ndx ) e. RR |
9 |
6 4
|
eqbrtri |
|- ( E ` ndx ) < 9 |
10 |
|
1nn |
|- 1 e. NN |
11 |
|
2nn0 |
|- 2 e. NN0 |
12 |
|
9nn0 |
|- 9 e. NN0 |
13 |
|
9lt10 |
|- 9 < ; 1 0 |
14 |
10 11 12 13
|
declti |
|- 9 < ; 1 2 |
15 |
|
9re |
|- 9 e. RR |
16 |
|
1nn0 |
|- 1 e. NN0 |
17 |
16 11
|
deccl |
|- ; 1 2 e. NN0 |
18 |
17
|
nn0rei |
|- ; 1 2 e. RR |
19 |
8 15 18
|
lttri |
|- ( ( ( E ` ndx ) < 9 /\ 9 < ; 1 2 ) -> ( E ` ndx ) < ; 1 2 ) |
20 |
9 14 19
|
mp2an |
|- ( E ` ndx ) < ; 1 2 |
21 |
8 20
|
ltneii |
|- ( E ` ndx ) =/= ; 1 2 |
22 |
|
dsndx |
|- ( dist ` ndx ) = ; 1 2 |
23 |
21 22
|
neeqtrri |
|- ( E ` ndx ) =/= ( dist ` ndx ) |
24 |
5 23
|
setsnid |
|- ( E ` G ) = ( E ` ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) ) |
25 |
8 9
|
ltneii |
|- ( E ` ndx ) =/= 9 |
26 |
|
tsetndx |
|- ( TopSet ` ndx ) = 9 |
27 |
25 26
|
neeqtrri |
|- ( E ` ndx ) =/= ( TopSet ` ndx ) |
28 |
5 27
|
setsnid |
|- ( E ` ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) ) = ( E ` ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. ( -g ` G ) ) ) >. ) ) |
29 |
24 28
|
eqtri |
|- ( E ` G ) = ( E ` ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. ( -g ` G ) ) ) >. ) ) |
30 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
31 |
|
eqid |
|- ( N o. ( -g ` G ) ) = ( N o. ( -g ` G ) ) |
32 |
|
eqid |
|- ( MetOpen ` ( N o. ( -g ` G ) ) ) = ( MetOpen ` ( N o. ( -g ` G ) ) ) |
33 |
1 30 31 32
|
tngval |
|- ( ( G e. _V /\ N e. V ) -> T = ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. ( -g ` G ) ) ) >. ) ) |
34 |
33
|
fveq2d |
|- ( ( G e. _V /\ N e. V ) -> ( E ` T ) = ( E ` ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. ( -g ` G ) ) ) >. ) ) ) |
35 |
29 34
|
eqtr4id |
|- ( ( G e. _V /\ N e. V ) -> ( E ` G ) = ( E ` T ) ) |
36 |
2
|
str0 |
|- (/) = ( E ` (/) ) |
37 |
|
fvprc |
|- ( -. G e. _V -> ( E ` G ) = (/) ) |
38 |
37
|
adantr |
|- ( ( -. G e. _V /\ N e. V ) -> ( E ` G ) = (/) ) |
39 |
|
reldmtng |
|- Rel dom toNrmGrp |
40 |
39
|
ovprc1 |
|- ( -. G e. _V -> ( G toNrmGrp N ) = (/) ) |
41 |
40
|
adantr |
|- ( ( -. G e. _V /\ N e. V ) -> ( G toNrmGrp N ) = (/) ) |
42 |
1 41
|
syl5eq |
|- ( ( -. G e. _V /\ N e. V ) -> T = (/) ) |
43 |
42
|
fveq2d |
|- ( ( -. G e. _V /\ N e. V ) -> ( E ` T ) = ( E ` (/) ) ) |
44 |
36 38 43
|
3eqtr4a |
|- ( ( -. G e. _V /\ N e. V ) -> ( E ` G ) = ( E ` T ) ) |
45 |
35 44
|
pm2.61ian |
|- ( N e. V -> ( E ` G ) = ( E ` T ) ) |