Metamath Proof Explorer
		
		
		
		Description:  Closure for a numeral.  (Contributed by Mario Carneiro, 17-Apr-2015)
       (Revised by AV, 6-Sep-2021)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						deccl.1 | 
						⊢ 𝐴  ∈  ℕ0  | 
					
					
						 | 
						 | 
						deccl.2 | 
						⊢ 𝐵  ∈  ℕ0  | 
					
				
					 | 
					Assertion | 
					deccl | 
					⊢  ; 𝐴 𝐵  ∈  ℕ0  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							deccl.1 | 
							⊢ 𝐴  ∈  ℕ0  | 
						
						
							| 2 | 
							
								
							 | 
							deccl.2 | 
							⊢ 𝐵  ∈  ℕ0  | 
						
						
							| 3 | 
							
								
							 | 
							df-dec | 
							⊢ ; 𝐴 𝐵  =  ( ( ( 9  +  1 )  ·  𝐴 )  +  𝐵 )  | 
						
						
							| 4 | 
							
								
							 | 
							9nn0 | 
							⊢ 9  ∈  ℕ0  | 
						
						
							| 5 | 
							
								
							 | 
							1nn0 | 
							⊢ 1  ∈  ℕ0  | 
						
						
							| 6 | 
							
								4 5
							 | 
							nn0addcli | 
							⊢ ( 9  +  1 )  ∈  ℕ0  | 
						
						
							| 7 | 
							
								6 1 2
							 | 
							numcl | 
							⊢ ( ( ( 9  +  1 )  ·  𝐴 )  +  𝐵 )  ∈  ℕ0  | 
						
						
							| 8 | 
							
								3 7
							 | 
							eqeltri | 
							⊢ ; 𝐴 𝐵  ∈  ℕ0  |