Metamath Proof Explorer


Theorem dsndxnmulrndx

Description: The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024)

Ref Expression
Assertion dsndxnmulrndx ( dist ‘ ndx ) ≠ ( .r ‘ ndx )

Proof

Step Hyp Ref Expression
1 3re 3 ∈ ℝ
2 1nn 1 ∈ ℕ
3 2nn0 2 ∈ ℕ0
4 3nn0 3 ∈ ℕ0
5 3lt10 3 < 1 0
6 2 3 4 5 declti 3 < 1 2
7 1 6 gtneii 1 2 ≠ 3
8 dsndx ( dist ‘ ndx ) = 1 2
9 mulrndx ( .r ‘ ndx ) = 3
10 8 9 neeq12i ( ( dist ‘ ndx ) ≠ ( .r ‘ ndx ) ↔ 1 2 ≠ 3 )
11 7 10 mpbir ( dist ‘ ndx ) ≠ ( .r ‘ ndx )