Metamath Proof Explorer


Theorem dsndxnmulrndx

Description: The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024)

Ref Expression
Assertion dsndxnmulrndx
|- ( dist ` ndx ) =/= ( .r ` ndx )

Proof

Step Hyp Ref Expression
1 3re
 |-  3 e. RR
2 1nn
 |-  1 e. NN
3 2nn0
 |-  2 e. NN0
4 3nn0
 |-  3 e. NN0
5 3lt10
 |-  3 < ; 1 0
6 2 3 4 5 declti
 |-  3 < ; 1 2
7 1 6 gtneii
 |-  ; 1 2 =/= 3
8 dsndx
 |-  ( dist ` ndx ) = ; 1 2
9 mulrndx
 |-  ( .r ` ndx ) = 3
10 8 9 neeq12i
 |-  ( ( dist ` ndx ) =/= ( .r ` ndx ) <-> ; 1 2 =/= 3 )
11 7 10 mpbir
 |-  ( dist ` ndx ) =/= ( .r ` ndx )