Step |
Hyp |
Ref |
Expression |
1 |
|
5re |
|- 5 e. RR |
2 |
|
1nn |
|- 1 e. NN |
3 |
|
2nn0 |
|- 2 e. NN0 |
4 |
|
5nn0 |
|- 5 e. NN0 |
5 |
|
5lt10 |
|- 5 < ; 1 0 |
6 |
2 3 4 5
|
declti |
|- 5 < ; 1 2 |
7 |
1 6
|
gtneii |
|- ; 1 2 =/= 5 |
8 |
|
dsndx |
|- ( dist ` ndx ) = ; 1 2 |
9 |
|
scandx |
|- ( Scalar ` ndx ) = 5 |
10 |
8 9
|
neeq12i |
|- ( ( dist ` ndx ) =/= ( Scalar ` ndx ) <-> ; 1 2 =/= 5 ) |
11 |
7 10
|
mpbir |
|- ( dist ` ndx ) =/= ( Scalar ` ndx ) |
12 |
|
6re |
|- 6 e. RR |
13 |
|
6nn0 |
|- 6 e. NN0 |
14 |
|
6lt10 |
|- 6 < ; 1 0 |
15 |
2 3 13 14
|
declti |
|- 6 < ; 1 2 |
16 |
12 15
|
gtneii |
|- ; 1 2 =/= 6 |
17 |
|
vscandx |
|- ( .s ` ndx ) = 6 |
18 |
8 17
|
neeq12i |
|- ( ( dist ` ndx ) =/= ( .s ` ndx ) <-> ; 1 2 =/= 6 ) |
19 |
16 18
|
mpbir |
|- ( dist ` ndx ) =/= ( .s ` ndx ) |
20 |
|
8re |
|- 8 e. RR |
21 |
|
8nn0 |
|- 8 e. NN0 |
22 |
|
8lt10 |
|- 8 < ; 1 0 |
23 |
2 3 21 22
|
declti |
|- 8 < ; 1 2 |
24 |
20 23
|
gtneii |
|- ; 1 2 =/= 8 |
25 |
|
ipndx |
|- ( .i ` ndx ) = 8 |
26 |
8 25
|
neeq12i |
|- ( ( dist ` ndx ) =/= ( .i ` ndx ) <-> ; 1 2 =/= 8 ) |
27 |
24 26
|
mpbir |
|- ( dist ` ndx ) =/= ( .i ` ndx ) |
28 |
11 19 27
|
3pm3.2i |
|- ( ( dist ` ndx ) =/= ( Scalar ` ndx ) /\ ( dist ` ndx ) =/= ( .s ` ndx ) /\ ( dist ` ndx ) =/= ( .i ` ndx ) ) |