Metamath Proof Explorer


Theorem dsndxntsetndx

Description: The slot for the distance function is not the slot for the topology in an extensible structure. Formerly part of proof for tngds . (Contributed by AV, 29-Oct-2024)

Ref Expression
Assertion dsndxntsetndx
|- ( dist ` ndx ) =/= ( TopSet ` ndx )

Proof

Step Hyp Ref Expression
1 9re
 |-  9 e. RR
2 1nn
 |-  1 e. NN
3 2nn0
 |-  2 e. NN0
4 9nn0
 |-  9 e. NN0
5 9lt10
 |-  9 < ; 1 0
6 2 3 4 5 declti
 |-  9 < ; 1 2
7 1 6 gtneii
 |-  ; 1 2 =/= 9
8 dsndx
 |-  ( dist ` ndx ) = ; 1 2
9 tsetndx
 |-  ( TopSet ` ndx ) = 9
10 8 9 neeq12i
 |-  ( ( dist ` ndx ) =/= ( TopSet ` ndx ) <-> ; 1 2 =/= 9 )
11 7 10 mpbir
 |-  ( dist ` ndx ) =/= ( TopSet ` ndx )