Metamath Proof Explorer


Theorem slotsdifdsndx

Description: The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfun . (Contributed by AV, 11-Nov-2024)

Ref Expression
Assertion slotsdifdsndx
|- ( ( *r ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) )

Proof

Step Hyp Ref Expression
1 4re
 |-  4 e. RR
2 1nn
 |-  1 e. NN
3 2nn0
 |-  2 e. NN0
4 4nn0
 |-  4 e. NN0
5 4lt10
 |-  4 < ; 1 0
6 2 3 4 5 declti
 |-  4 < ; 1 2
7 1 6 ltneii
 |-  4 =/= ; 1 2
8 starvndx
 |-  ( *r ` ndx ) = 4
9 dsndx
 |-  ( dist ` ndx ) = ; 1 2
10 8 9 neeq12i
 |-  ( ( *r ` ndx ) =/= ( dist ` ndx ) <-> 4 =/= ; 1 2 )
11 7 10 mpbir
 |-  ( *r ` ndx ) =/= ( dist ` ndx )
12 10re
 |-  ; 1 0 e. RR
13 1nn0
 |-  1 e. NN0
14 0nn0
 |-  0 e. NN0
15 2nn
 |-  2 e. NN
16 2pos
 |-  0 < 2
17 13 14 15 16 declt
 |-  ; 1 0 < ; 1 2
18 12 17 ltneii
 |-  ; 1 0 =/= ; 1 2
19 plendx
 |-  ( le ` ndx ) = ; 1 0
20 19 9 neeq12i
 |-  ( ( le ` ndx ) =/= ( dist ` ndx ) <-> ; 1 0 =/= ; 1 2 )
21 18 20 mpbir
 |-  ( le ` ndx ) =/= ( dist ` ndx )
22 11 21 pm3.2i
 |-  ( ( *r ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) )