Step |
Hyp |
Ref |
Expression |
1 |
|
4re |
|- 4 e. RR |
2 |
|
1nn |
|- 1 e. NN |
3 |
|
2nn0 |
|- 2 e. NN0 |
4 |
|
4nn0 |
|- 4 e. NN0 |
5 |
|
4lt10 |
|- 4 < ; 1 0 |
6 |
2 3 4 5
|
declti |
|- 4 < ; 1 2 |
7 |
1 6
|
ltneii |
|- 4 =/= ; 1 2 |
8 |
|
starvndx |
|- ( *r ` ndx ) = 4 |
9 |
|
dsndx |
|- ( dist ` ndx ) = ; 1 2 |
10 |
8 9
|
neeq12i |
|- ( ( *r ` ndx ) =/= ( dist ` ndx ) <-> 4 =/= ; 1 2 ) |
11 |
7 10
|
mpbir |
|- ( *r ` ndx ) =/= ( dist ` ndx ) |
12 |
|
10re |
|- ; 1 0 e. RR |
13 |
|
1nn0 |
|- 1 e. NN0 |
14 |
|
0nn0 |
|- 0 e. NN0 |
15 |
|
2nn |
|- 2 e. NN |
16 |
|
2pos |
|- 0 < 2 |
17 |
13 14 15 16
|
declt |
|- ; 1 0 < ; 1 2 |
18 |
12 17
|
ltneii |
|- ; 1 0 =/= ; 1 2 |
19 |
|
plendx |
|- ( le ` ndx ) = ; 1 0 |
20 |
19 9
|
neeq12i |
|- ( ( le ` ndx ) =/= ( dist ` ndx ) <-> ; 1 0 =/= ; 1 2 ) |
21 |
18 20
|
mpbir |
|- ( le ` ndx ) =/= ( dist ` ndx ) |
22 |
11 21
|
pm3.2i |
|- ( ( *r ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) ) |