Metamath Proof Explorer


Theorem slotsdifdsndx

Description: The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfun . (Contributed by AV, 11-Nov-2024)

Ref Expression
Assertion slotsdifdsndx ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( dist ‘ ndx ) )

Proof

Step Hyp Ref Expression
1 4re 4 ∈ ℝ
2 1nn 1 ∈ ℕ
3 2nn0 2 ∈ ℕ0
4 4nn0 4 ∈ ℕ0
5 4lt10 4 < 1 0
6 2 3 4 5 declti 4 < 1 2
7 1 6 ltneii 4 ≠ 1 2
8 starvndx ( *𝑟 ‘ ndx ) = 4
9 dsndx ( dist ‘ ndx ) = 1 2
10 8 9 neeq12i ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) ↔ 4 ≠ 1 2 )
11 7 10 mpbir ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx )
12 10re 1 0 ∈ ℝ
13 1nn0 1 ∈ ℕ0
14 0nn0 0 ∈ ℕ0
15 2nn 2 ∈ ℕ
16 2pos 0 < 2
17 13 14 15 16 declt 1 0 < 1 2
18 12 17 ltneii 1 0 ≠ 1 2
19 plendx ( le ‘ ndx ) = 1 0
20 19 9 neeq12i ( ( le ‘ ndx ) ≠ ( dist ‘ ndx ) ↔ 1 0 ≠ 1 2 )
21 18 20 mpbir ( le ‘ ndx ) ≠ ( dist ‘ ndx )
22 11 21 pm3.2i ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( dist ‘ ndx ) )