Description: The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfun . (Contributed by AV, 11-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | slotsdifdsndx | ⊢ ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( dist ‘ ndx ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re | ⊢ 4 ∈ ℝ | |
2 | 1nn | ⊢ 1 ∈ ℕ | |
3 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
4 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
5 | 4lt10 | ⊢ 4 < ; 1 0 | |
6 | 2 3 4 5 | declti | ⊢ 4 < ; 1 2 |
7 | 1 6 | ltneii | ⊢ 4 ≠ ; 1 2 |
8 | starvndx | ⊢ ( *𝑟 ‘ ndx ) = 4 | |
9 | dsndx | ⊢ ( dist ‘ ndx ) = ; 1 2 | |
10 | 8 9 | neeq12i | ⊢ ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) ↔ 4 ≠ ; 1 2 ) |
11 | 7 10 | mpbir | ⊢ ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) |
12 | 10re | ⊢ ; 1 0 ∈ ℝ | |
13 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
14 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
15 | 2nn | ⊢ 2 ∈ ℕ | |
16 | 2pos | ⊢ 0 < 2 | |
17 | 13 14 15 16 | declt | ⊢ ; 1 0 < ; 1 2 |
18 | 12 17 | ltneii | ⊢ ; 1 0 ≠ ; 1 2 |
19 | plendx | ⊢ ( le ‘ ndx ) = ; 1 0 | |
20 | 19 9 | neeq12i | ⊢ ( ( le ‘ ndx ) ≠ ( dist ‘ ndx ) ↔ ; 1 0 ≠ ; 1 2 ) |
21 | 18 20 | mpbir | ⊢ ( le ‘ ndx ) ≠ ( dist ‘ ndx ) |
22 | 11 21 | pm3.2i | ⊢ ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( dist ‘ ndx ) ) |