Step |
Hyp |
Ref |
Expression |
1 |
|
basendxnplusgndx |
|- ( Base ` ndx ) =/= ( +g ` ndx ) |
2 |
|
basendxnmulrndx |
|- ( Base ` ndx ) =/= ( .r ` ndx ) |
3 |
|
plusgndxnmulrndx |
|- ( +g ` ndx ) =/= ( .r ` ndx ) |
4 |
|
fvex |
|- ( Base ` ndx ) e. _V |
5 |
|
fvex |
|- ( +g ` ndx ) e. _V |
6 |
|
fvex |
|- ( .r ` ndx ) e. _V |
7 |
|
cnex |
|- CC e. _V |
8 |
|
addex |
|- + e. _V |
9 |
|
mulex |
|- x. e. _V |
10 |
4 5 6 7 8 9
|
funtp |
|- ( ( ( Base ` ndx ) =/= ( +g ` ndx ) /\ ( Base ` ndx ) =/= ( .r ` ndx ) /\ ( +g ` ndx ) =/= ( .r ` ndx ) ) -> Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } ) |
11 |
1 2 3 10
|
mp3an |
|- Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } |
12 |
|
fvex |
|- ( *r ` ndx ) e. _V |
13 |
|
cjf |
|- * : CC --> CC |
14 |
|
fex |
|- ( ( * : CC --> CC /\ CC e. _V ) -> * e. _V ) |
15 |
13 7 14
|
mp2an |
|- * e. _V |
16 |
12 15
|
funsn |
|- Fun { <. ( *r ` ndx ) , * >. } |
17 |
11 16
|
pm3.2i |
|- ( Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } /\ Fun { <. ( *r ` ndx ) , * >. } ) |
18 |
7 8 9
|
dmtpop |
|- dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } = { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } |
19 |
15
|
dmsnop |
|- dom { <. ( *r ` ndx ) , * >. } = { ( *r ` ndx ) } |
20 |
18 19
|
ineq12i |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( *r ` ndx ) , * >. } ) = ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( *r ` ndx ) } ) |
21 |
|
basendx |
|- ( Base ` ndx ) = 1 |
22 |
|
1re |
|- 1 e. RR |
23 |
|
1lt4 |
|- 1 < 4 |
24 |
22 23
|
ltneii |
|- 1 =/= 4 |
25 |
|
starvndx |
|- ( *r ` ndx ) = 4 |
26 |
24 25
|
neeqtrri |
|- 1 =/= ( *r ` ndx ) |
27 |
21 26
|
eqnetri |
|- ( Base ` ndx ) =/= ( *r ` ndx ) |
28 |
|
plusgndx |
|- ( +g ` ndx ) = 2 |
29 |
|
2re |
|- 2 e. RR |
30 |
|
2lt4 |
|- 2 < 4 |
31 |
29 30
|
ltneii |
|- 2 =/= 4 |
32 |
31 25
|
neeqtrri |
|- 2 =/= ( *r ` ndx ) |
33 |
28 32
|
eqnetri |
|- ( +g ` ndx ) =/= ( *r ` ndx ) |
34 |
|
mulrndx |
|- ( .r ` ndx ) = 3 |
35 |
|
3re |
|- 3 e. RR |
36 |
|
3lt4 |
|- 3 < 4 |
37 |
35 36
|
ltneii |
|- 3 =/= 4 |
38 |
37 25
|
neeqtrri |
|- 3 =/= ( *r ` ndx ) |
39 |
34 38
|
eqnetri |
|- ( .r ` ndx ) =/= ( *r ` ndx ) |
40 |
|
disjtpsn |
|- ( ( ( Base ` ndx ) =/= ( *r ` ndx ) /\ ( +g ` ndx ) =/= ( *r ` ndx ) /\ ( .r ` ndx ) =/= ( *r ` ndx ) ) -> ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) ) |
41 |
27 33 39 40
|
mp3an |
|- ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) |
42 |
20 41
|
eqtri |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( *r ` ndx ) , * >. } ) = (/) |
43 |
|
funun |
|- ( ( ( Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } /\ Fun { <. ( *r ` ndx ) , * >. } ) /\ ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( *r ` ndx ) , * >. } ) = (/) ) -> Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) ) |
44 |
17 42 43
|
mp2an |
|- Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) |
45 |
|
tsetndx |
|- ( TopSet ` ndx ) = 9 |
46 |
|
9re |
|- 9 e. RR |
47 |
|
9lt10 |
|- 9 < ; 1 0 |
48 |
46 47
|
ltneii |
|- 9 =/= ; 1 0 |
49 |
|
plendx |
|- ( le ` ndx ) = ; 1 0 |
50 |
48 49
|
neeqtrri |
|- 9 =/= ( le ` ndx ) |
51 |
45 50
|
eqnetri |
|- ( TopSet ` ndx ) =/= ( le ` ndx ) |
52 |
|
1nn |
|- 1 e. NN |
53 |
|
2nn0 |
|- 2 e. NN0 |
54 |
|
9nn0 |
|- 9 e. NN0 |
55 |
46
|
leidi |
|- 9 <_ 9 |
56 |
52 53 54 55
|
decltdi |
|- 9 < ; 1 2 |
57 |
46 56
|
ltneii |
|- 9 =/= ; 1 2 |
58 |
|
dsndx |
|- ( dist ` ndx ) = ; 1 2 |
59 |
57 58
|
neeqtrri |
|- 9 =/= ( dist ` ndx ) |
60 |
45 59
|
eqnetri |
|- ( TopSet ` ndx ) =/= ( dist ` ndx ) |
61 |
|
10re |
|- ; 1 0 e. RR |
62 |
|
1nn0 |
|- 1 e. NN0 |
63 |
|
0nn0 |
|- 0 e. NN0 |
64 |
|
2nn |
|- 2 e. NN |
65 |
|
2pos |
|- 0 < 2 |
66 |
62 63 64 65
|
declt |
|- ; 1 0 < ; 1 2 |
67 |
61 66
|
ltneii |
|- ; 1 0 =/= ; 1 2 |
68 |
67 58
|
neeqtrri |
|- ; 1 0 =/= ( dist ` ndx ) |
69 |
49 68
|
eqnetri |
|- ( le ` ndx ) =/= ( dist ` ndx ) |
70 |
|
fvex |
|- ( TopSet ` ndx ) e. _V |
71 |
|
fvex |
|- ( le ` ndx ) e. _V |
72 |
|
fvex |
|- ( dist ` ndx ) e. _V |
73 |
|
fvex |
|- ( MetOpen ` ( abs o. - ) ) e. _V |
74 |
|
letsr |
|- <_ e. TosetRel |
75 |
74
|
elexi |
|- <_ e. _V |
76 |
|
absf |
|- abs : CC --> RR |
77 |
|
fex |
|- ( ( abs : CC --> RR /\ CC e. _V ) -> abs e. _V ) |
78 |
76 7 77
|
mp2an |
|- abs e. _V |
79 |
|
subf |
|- - : ( CC X. CC ) --> CC |
80 |
7 7
|
xpex |
|- ( CC X. CC ) e. _V |
81 |
|
fex |
|- ( ( - : ( CC X. CC ) --> CC /\ ( CC X. CC ) e. _V ) -> - e. _V ) |
82 |
79 80 81
|
mp2an |
|- - e. _V |
83 |
78 82
|
coex |
|- ( abs o. - ) e. _V |
84 |
70 71 72 73 75 83
|
funtp |
|- ( ( ( TopSet ` ndx ) =/= ( le ` ndx ) /\ ( TopSet ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) ) -> Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) |
85 |
51 60 69 84
|
mp3an |
|- Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } |
86 |
|
fvex |
|- ( UnifSet ` ndx ) e. _V |
87 |
|
fvex |
|- ( metUnif ` ( abs o. - ) ) e. _V |
88 |
86 87
|
funsn |
|- Fun { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } |
89 |
85 88
|
pm3.2i |
|- ( Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ Fun { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
90 |
73 75 83
|
dmtpop |
|- dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } = { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } |
91 |
87
|
dmsnop |
|- dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } = { ( UnifSet ` ndx ) } |
92 |
90 91
|
ineq12i |
|- ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( UnifSet ` ndx ) } ) |
93 |
|
3nn0 |
|- 3 e. NN0 |
94 |
52 93 54 55
|
decltdi |
|- 9 < ; 1 3 |
95 |
46 94
|
ltneii |
|- 9 =/= ; 1 3 |
96 |
|
unifndx |
|- ( UnifSet ` ndx ) = ; 1 3 |
97 |
95 96
|
neeqtrri |
|- 9 =/= ( UnifSet ` ndx ) |
98 |
45 97
|
eqnetri |
|- ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) |
99 |
|
3nn |
|- 3 e. NN |
100 |
|
3pos |
|- 0 < 3 |
101 |
62 63 99 100
|
declt |
|- ; 1 0 < ; 1 3 |
102 |
61 101
|
ltneii |
|- ; 1 0 =/= ; 1 3 |
103 |
102 96
|
neeqtrri |
|- ; 1 0 =/= ( UnifSet ` ndx ) |
104 |
49 103
|
eqnetri |
|- ( le ` ndx ) =/= ( UnifSet ` ndx ) |
105 |
62 53
|
deccl |
|- ; 1 2 e. NN0 |
106 |
105
|
nn0rei |
|- ; 1 2 e. RR |
107 |
|
2lt3 |
|- 2 < 3 |
108 |
62 53 99 107
|
declt |
|- ; 1 2 < ; 1 3 |
109 |
106 108
|
ltneii |
|- ; 1 2 =/= ; 1 3 |
110 |
109 96
|
neeqtrri |
|- ; 1 2 =/= ( UnifSet ` ndx ) |
111 |
58 110
|
eqnetri |
|- ( dist ` ndx ) =/= ( UnifSet ` ndx ) |
112 |
|
disjtpsn |
|- ( ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) ) |
113 |
98 104 111 112
|
mp3an |
|- ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) |
114 |
92 113
|
eqtri |
|- ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) |
115 |
|
funun |
|- ( ( ( Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ Fun { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) /\ ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) -> Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
116 |
89 114 115
|
mp2an |
|- Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
117 |
44 116
|
pm3.2i |
|- ( Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) /\ Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
118 |
|
dmun |
|- dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) = ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. dom { <. ( *r ` ndx ) , * >. } ) |
119 |
|
dmun |
|- dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
120 |
118 119
|
ineq12i |
|- ( dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) i^i dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. dom { <. ( *r ` ndx ) , * >. } ) i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
121 |
18 90
|
ineq12i |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) |
122 |
|
1lt9 |
|- 1 < 9 |
123 |
22 122
|
ltneii |
|- 1 =/= 9 |
124 |
123 45
|
neeqtrri |
|- 1 =/= ( TopSet ` ndx ) |
125 |
21 124
|
eqnetri |
|- ( Base ` ndx ) =/= ( TopSet ` ndx ) |
126 |
|
2lt9 |
|- 2 < 9 |
127 |
29 126
|
ltneii |
|- 2 =/= 9 |
128 |
127 45
|
neeqtrri |
|- 2 =/= ( TopSet ` ndx ) |
129 |
28 128
|
eqnetri |
|- ( +g ` ndx ) =/= ( TopSet ` ndx ) |
130 |
|
3lt9 |
|- 3 < 9 |
131 |
35 130
|
ltneii |
|- 3 =/= 9 |
132 |
131 45
|
neeqtrri |
|- 3 =/= ( TopSet ` ndx ) |
133 |
34 132
|
eqnetri |
|- ( .r ` ndx ) =/= ( TopSet ` ndx ) |
134 |
125 129 133
|
3pm3.2i |
|- ( ( Base ` ndx ) =/= ( TopSet ` ndx ) /\ ( +g ` ndx ) =/= ( TopSet ` ndx ) /\ ( .r ` ndx ) =/= ( TopSet ` ndx ) ) |
135 |
|
1lt10 |
|- 1 < ; 1 0 |
136 |
22 135
|
ltneii |
|- 1 =/= ; 1 0 |
137 |
136 49
|
neeqtrri |
|- 1 =/= ( le ` ndx ) |
138 |
21 137
|
eqnetri |
|- ( Base ` ndx ) =/= ( le ` ndx ) |
139 |
|
2lt10 |
|- 2 < ; 1 0 |
140 |
29 139
|
ltneii |
|- 2 =/= ; 1 0 |
141 |
140 49
|
neeqtrri |
|- 2 =/= ( le ` ndx ) |
142 |
28 141
|
eqnetri |
|- ( +g ` ndx ) =/= ( le ` ndx ) |
143 |
|
3lt10 |
|- 3 < ; 1 0 |
144 |
35 143
|
ltneii |
|- 3 =/= ; 1 0 |
145 |
144 49
|
neeqtrri |
|- 3 =/= ( le ` ndx ) |
146 |
34 145
|
eqnetri |
|- ( .r ` ndx ) =/= ( le ` ndx ) |
147 |
138 142 146
|
3pm3.2i |
|- ( ( Base ` ndx ) =/= ( le ` ndx ) /\ ( +g ` ndx ) =/= ( le ` ndx ) /\ ( .r ` ndx ) =/= ( le ` ndx ) ) |
148 |
22 46 122
|
ltleii |
|- 1 <_ 9 |
149 |
52 53 62 148
|
decltdi |
|- 1 < ; 1 2 |
150 |
22 149
|
ltneii |
|- 1 =/= ; 1 2 |
151 |
150 58
|
neeqtrri |
|- 1 =/= ( dist ` ndx ) |
152 |
21 151
|
eqnetri |
|- ( Base ` ndx ) =/= ( dist ` ndx ) |
153 |
29 46 126
|
ltleii |
|- 2 <_ 9 |
154 |
52 53 53 153
|
decltdi |
|- 2 < ; 1 2 |
155 |
29 154
|
ltneii |
|- 2 =/= ; 1 2 |
156 |
155 58
|
neeqtrri |
|- 2 =/= ( dist ` ndx ) |
157 |
28 156
|
eqnetri |
|- ( +g ` ndx ) =/= ( dist ` ndx ) |
158 |
35 46 130
|
ltleii |
|- 3 <_ 9 |
159 |
52 53 93 158
|
decltdi |
|- 3 < ; 1 2 |
160 |
35 159
|
ltneii |
|- 3 =/= ; 1 2 |
161 |
160 58
|
neeqtrri |
|- 3 =/= ( dist ` ndx ) |
162 |
34 161
|
eqnetri |
|- ( .r ` ndx ) =/= ( dist ` ndx ) |
163 |
152 157 162
|
3pm3.2i |
|- ( ( Base ` ndx ) =/= ( dist ` ndx ) /\ ( +g ` ndx ) =/= ( dist ` ndx ) /\ ( .r ` ndx ) =/= ( dist ` ndx ) ) |
164 |
|
disjtp2 |
|- ( ( ( ( Base ` ndx ) =/= ( TopSet ` ndx ) /\ ( +g ` ndx ) =/= ( TopSet ` ndx ) /\ ( .r ` ndx ) =/= ( TopSet ` ndx ) ) /\ ( ( Base ` ndx ) =/= ( le ` ndx ) /\ ( +g ` ndx ) =/= ( le ` ndx ) /\ ( .r ` ndx ) =/= ( le ` ndx ) ) /\ ( ( Base ` ndx ) =/= ( dist ` ndx ) /\ ( +g ` ndx ) =/= ( dist ` ndx ) /\ ( .r ` ndx ) =/= ( dist ` ndx ) ) ) -> ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = (/) ) |
165 |
134 147 163 164
|
mp3an |
|- ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = (/) |
166 |
121 165
|
eqtri |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) |
167 |
18 91
|
ineq12i |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) |
168 |
52 93 62 148
|
decltdi |
|- 1 < ; 1 3 |
169 |
22 168
|
ltneii |
|- 1 =/= ; 1 3 |
170 |
169 96
|
neeqtrri |
|- 1 =/= ( UnifSet ` ndx ) |
171 |
21 170
|
eqnetri |
|- ( Base ` ndx ) =/= ( UnifSet ` ndx ) |
172 |
52 93 53 153
|
decltdi |
|- 2 < ; 1 3 |
173 |
29 172
|
ltneii |
|- 2 =/= ; 1 3 |
174 |
173 96
|
neeqtrri |
|- 2 =/= ( UnifSet ` ndx ) |
175 |
28 174
|
eqnetri |
|- ( +g ` ndx ) =/= ( UnifSet ` ndx ) |
176 |
52 93 93 158
|
decltdi |
|- 3 < ; 1 3 |
177 |
35 176
|
ltneii |
|- 3 =/= ; 1 3 |
178 |
177 96
|
neeqtrri |
|- 3 =/= ( UnifSet ` ndx ) |
179 |
34 178
|
eqnetri |
|- ( .r ` ndx ) =/= ( UnifSet ` ndx ) |
180 |
|
disjtpsn |
|- ( ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) ) |
181 |
171 175 179 180
|
mp3an |
|- ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) |
182 |
167 181
|
eqtri |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) |
183 |
166 182
|
pm3.2i |
|- ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) |
184 |
|
undisj2 |
|- ( ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) <-> ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) |
185 |
183 184
|
mpbi |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) |
186 |
19 90
|
ineq12i |
|- ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = ( { ( *r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) |
187 |
|
incom |
|- ( { ( *r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( *r ` ndx ) } ) |
188 |
|
4re |
|- 4 e. RR |
189 |
|
4lt9 |
|- 4 < 9 |
190 |
188 189
|
gtneii |
|- 9 =/= 4 |
191 |
190 25
|
neeqtrri |
|- 9 =/= ( *r ` ndx ) |
192 |
45 191
|
eqnetri |
|- ( TopSet ` ndx ) =/= ( *r ` ndx ) |
193 |
|
4lt10 |
|- 4 < ; 1 0 |
194 |
188 193
|
gtneii |
|- ; 1 0 =/= 4 |
195 |
194 25
|
neeqtrri |
|- ; 1 0 =/= ( *r ` ndx ) |
196 |
49 195
|
eqnetri |
|- ( le ` ndx ) =/= ( *r ` ndx ) |
197 |
|
4nn0 |
|- 4 e. NN0 |
198 |
188 46 189
|
ltleii |
|- 4 <_ 9 |
199 |
52 53 197 198
|
decltdi |
|- 4 < ; 1 2 |
200 |
188 199
|
gtneii |
|- ; 1 2 =/= 4 |
201 |
200 25
|
neeqtrri |
|- ; 1 2 =/= ( *r ` ndx ) |
202 |
58 201
|
eqnetri |
|- ( dist ` ndx ) =/= ( *r ` ndx ) |
203 |
|
disjtpsn |
|- ( ( ( TopSet ` ndx ) =/= ( *r ` ndx ) /\ ( le ` ndx ) =/= ( *r ` ndx ) /\ ( dist ` ndx ) =/= ( *r ` ndx ) ) -> ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) ) |
204 |
192 196 202 203
|
mp3an |
|- ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) |
205 |
187 204
|
eqtri |
|- ( { ( *r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = (/) |
206 |
186 205
|
eqtri |
|- ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) |
207 |
19 91
|
ineq12i |
|- ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( { ( *r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) |
208 |
52 93 197 198
|
decltdi |
|- 4 < ; 1 3 |
209 |
188 208
|
ltneii |
|- 4 =/= ; 1 3 |
210 |
209 96
|
neeqtrri |
|- 4 =/= ( UnifSet ` ndx ) |
211 |
25 210
|
eqnetri |
|- ( *r ` ndx ) =/= ( UnifSet ` ndx ) |
212 |
|
disjsn2 |
|- ( ( *r ` ndx ) =/= ( UnifSet ` ndx ) -> ( { ( *r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) ) |
213 |
211 212
|
ax-mp |
|- ( { ( *r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) |
214 |
207 213
|
eqtri |
|- ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) |
215 |
206 214
|
pm3.2i |
|- ( ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) |
216 |
|
undisj2 |
|- ( ( ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) <-> ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) |
217 |
215 216
|
mpbi |
|- ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) |
218 |
185 217
|
pm3.2i |
|- ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) |
219 |
|
undisj1 |
|- ( ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) <-> ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. dom { <. ( *r ` ndx ) , * >. } ) i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) |
220 |
218 219
|
mpbi |
|- ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. dom { <. ( *r ` ndx ) , * >. } ) i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) |
221 |
120 220
|
eqtri |
|- ( dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) i^i dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) |
222 |
|
funun |
|- ( ( ( Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) /\ Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) /\ ( dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) i^i dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) -> Fun ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
223 |
117 221 222
|
mp2an |
|- Fun ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
224 |
|
df-cnfld |
|- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
225 |
224
|
funeqi |
|- ( Fun CCfld <-> Fun ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
226 |
223 225
|
mpbir |
|- Fun CCfld |