Metamath Proof Explorer


Theorem cnfldfun

Description: The field of complex numbers is a function. The proof is much shorter than the proof of cnfldfunALT by using cnfldstr and structn0fun : in addition, it must be shown that (/) e/ CCfld . (Contributed by AV, 18-Nov-2021)

Ref Expression
Assertion cnfldfun Funfld

Proof

Step Hyp Ref Expression
1 cnfldstr fldStruct113
2 structn0fun fldStruct113Funfld
3 fvex BasendxV
4 cnex V
5 3 4 opnzi Basendx
6 5 nesymi ¬=Basendx
7 fvex +ndxV
8 addex +V
9 7 8 opnzi +ndx+
10 9 nesymi ¬=+ndx+
11 fvex ndxV
12 mulex ×V
13 11 12 opnzi ndx×
14 13 nesymi ¬=ndx×
15 3ioran ¬=Basendx=+ndx+=ndx׬=Basendx¬=+ndx+¬=ndx×
16 0ex V
17 16 eltp Basendx+ndx+ndx×=Basendx=+ndx+=ndx×
18 15 17 xchnxbir ¬Basendx+ndx+ndx׬=Basendx¬=+ndx+¬=ndx×
19 6 10 14 18 mpbir3an ¬Basendx+ndx+ndx×
20 fvex *ndxV
21 cjf *:
22 fex *:V*V
23 21 4 22 mp2an *V
24 20 23 opnzi *ndx*
25 24 necomi *ndx*
26 nelsn *ndx*¬*ndx*
27 25 26 ax-mp ¬*ndx*
28 19 27 pm3.2i ¬Basendx+ndx+ndx׬*ndx*
29 fvex TopSetndxV
30 fvex MetOpenabsV
31 29 30 opnzi TopSetndxMetOpenabs
32 31 nesymi ¬=TopSetndxMetOpenabs
33 fvex ndxV
34 letsr TosetRel
35 34 elexi V
36 33 35 opnzi ndx
37 36 nesymi ¬=ndx
38 fvex distndxV
39 absf abs:
40 fex abs:VabsV
41 39 4 40 mp2an absV
42 subf :×
43 4 4 xpex ×V
44 fex :××VV
45 42 43 44 mp2an V
46 41 45 coex absV
47 38 46 opnzi distndxabs
48 47 nesymi ¬=distndxabs
49 3ioran ¬=TopSetndxMetOpenabs=ndx=distndxabs¬=TopSetndxMetOpenabs¬=ndx¬=distndxabs
50 32 37 48 49 mpbir3an ¬=TopSetndxMetOpenabs=ndx=distndxabs
51 16 eltp TopSetndxMetOpenabsndxdistndxabs=TopSetndxMetOpenabs=ndx=distndxabs
52 50 51 mtbir ¬TopSetndxMetOpenabsndxdistndxabs
53 fvex UnifSetndxV
54 fvex metUnifabsV
55 53 54 opnzi UnifSetndxmetUnifabs
56 55 necomi UnifSetndxmetUnifabs
57 nelsn UnifSetndxmetUnifabs¬UnifSetndxmetUnifabs
58 56 57 ax-mp ¬UnifSetndxmetUnifabs
59 52 58 pm3.2i ¬TopSetndxMetOpenabsndxdistndxabs¬UnifSetndxmetUnifabs
60 28 59 pm3.2i ¬Basendx+ndx+ndx׬*ndx*¬TopSetndxMetOpenabsndxdistndxabs¬UnifSetndxmetUnifabs
61 ioran ¬Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs¬Basendx+ndx+ndx×*ndx*¬TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
62 ioran ¬Basendx+ndx+ndx×*ndx*¬Basendx+ndx+ndx׬*ndx*
63 ioran ¬TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs¬TopSetndxMetOpenabsndxdistndxabs¬UnifSetndxmetUnifabs
64 62 63 anbi12i ¬Basendx+ndx+ndx×*ndx*¬TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs¬Basendx+ndx+ndx׬*ndx*¬TopSetndxMetOpenabsndxdistndxabs¬UnifSetndxmetUnifabs
65 61 64 bitri ¬Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs¬Basendx+ndx+ndx׬*ndx*¬TopSetndxMetOpenabsndxdistndxabs¬UnifSetndxmetUnifabs
66 60 65 mpbir ¬Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
67 df-cnfld fld=Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
68 67 eleq2i fldBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
69 elun Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabsBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
70 elun Basendx+ndx+ndx×*ndx*Basendx+ndx+ndx×*ndx*
71 elun TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabsTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
72 70 71 orbi12i Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabsBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
73 68 69 72 3bitri fldBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
74 66 73 mtbir ¬fld
75 disjsn fld=¬fld
76 74 75 mpbir fld=
77 disjdif2 fld=fld=fld
78 76 77 ax-mp fld=fld
79 78 funeqi FunfldFunfld
80 2 79 sylib fldStruct113Funfld
81 1 80 ax-mp Funfld