Metamath Proof Explorer


Theorem cnfldfun

Description: The field of complex numbers is a function. (Contributed by AV, 14-Nov-2021)

Ref Expression
Assertion cnfldfun Fun fld

Proof

Step Hyp Ref Expression
1 basendxnplusgndx Base ndx + ndx
2 basendxnmulrndx Base ndx ndx
3 plusgndxnmulrndx + ndx ndx
4 fvex Base ndx V
5 fvex + ndx V
6 fvex ndx V
7 cnex V
8 addex + V
9 mulex × V
10 4 5 6 7 8 9 funtp Base ndx + ndx Base ndx ndx + ndx ndx Fun Base ndx + ndx + ndx ×
11 1 2 3 10 mp3an Fun Base ndx + ndx + ndx ×
12 fvex * ndx V
13 cjf * :
14 fex * : V * V
15 13 7 14 mp2an * V
16 12 15 funsn Fun * ndx *
17 11 16 pm3.2i Fun Base ndx + ndx + ndx × Fun * ndx *
18 7 8 9 dmtpop dom Base ndx + ndx + ndx × = Base ndx + ndx ndx
19 15 dmsnop dom * ndx * = * ndx
20 18 19 ineq12i dom Base ndx + ndx + ndx × dom * ndx * = Base ndx + ndx ndx * ndx
21 basendx Base ndx = 1
22 1re 1
23 1lt4 1 < 4
24 22 23 ltneii 1 4
25 starvndx * ndx = 4
26 24 25 neeqtrri 1 * ndx
27 21 26 eqnetri Base ndx * ndx
28 plusgndx + ndx = 2
29 2re 2
30 2lt4 2 < 4
31 29 30 ltneii 2 4
32 31 25 neeqtrri 2 * ndx
33 28 32 eqnetri + ndx * ndx
34 mulrndx ndx = 3
35 3re 3
36 3lt4 3 < 4
37 35 36 ltneii 3 4
38 37 25 neeqtrri 3 * ndx
39 34 38 eqnetri ndx * ndx
40 disjtpsn Base ndx * ndx + ndx * ndx ndx * ndx Base ndx + ndx ndx * ndx =
41 27 33 39 40 mp3an Base ndx + ndx ndx * ndx =
42 20 41 eqtri dom Base ndx + ndx + ndx × dom * ndx * =
43 funun Fun Base ndx + ndx + ndx × Fun * ndx * dom Base ndx + ndx + ndx × dom * ndx * = Fun Base ndx + ndx + ndx × * ndx *
44 17 42 43 mp2an Fun Base ndx + ndx + ndx × * ndx *
45 tsetndx TopSet ndx = 9
46 9re 9
47 9lt10 9 < 10
48 46 47 ltneii 9 10
49 plendx ndx = 10
50 48 49 neeqtrri 9 ndx
51 45 50 eqnetri TopSet ndx ndx
52 1nn 1
53 2nn0 2 0
54 9nn0 9 0
55 46 leidi 9 9
56 52 53 54 55 decltdi 9 < 12
57 46 56 ltneii 9 12
58 dsndx dist ndx = 12
59 57 58 neeqtrri 9 dist ndx
60 45 59 eqnetri TopSet ndx dist ndx
61 10re 10
62 1nn0 1 0
63 0nn0 0 0
64 2nn 2
65 2pos 0 < 2
66 62 63 64 65 declt 10 < 12
67 61 66 ltneii 10 12
68 67 58 neeqtrri 10 dist ndx
69 49 68 eqnetri ndx dist ndx
70 fvex TopSet ndx V
71 fvex ndx V
72 fvex dist ndx V
73 fvex MetOpen abs V
74 letsr TosetRel
75 74 elexi V
76 absf abs :
77 fex abs : V abs V
78 76 7 77 mp2an abs V
79 subf : ×
80 7 7 xpex × V
81 fex : × × V V
82 79 80 81 mp2an V
83 78 82 coex abs V
84 70 71 72 73 75 83 funtp TopSet ndx ndx TopSet ndx dist ndx ndx dist ndx Fun TopSet ndx MetOpen abs ndx dist ndx abs
85 51 60 69 84 mp3an Fun TopSet ndx MetOpen abs ndx dist ndx abs
86 fvex UnifSet ndx V
87 fvex metUnif abs V
88 86 87 funsn Fun UnifSet ndx metUnif abs
89 85 88 pm3.2i Fun TopSet ndx MetOpen abs ndx dist ndx abs Fun UnifSet ndx metUnif abs
90 73 75 83 dmtpop dom TopSet ndx MetOpen abs ndx dist ndx abs = TopSet ndx ndx dist ndx
91 87 dmsnop dom UnifSet ndx metUnif abs = UnifSet ndx
92 90 91 ineq12i dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs = TopSet ndx ndx dist ndx UnifSet ndx
93 3nn0 3 0
94 52 93 54 55 decltdi 9 < 13
95 46 94 ltneii 9 13
96 unifndx UnifSet ndx = 13
97 95 96 neeqtrri 9 UnifSet ndx
98 45 97 eqnetri TopSet ndx UnifSet ndx
99 3nn 3
100 3pos 0 < 3
101 62 63 99 100 declt 10 < 13
102 61 101 ltneii 10 13
103 102 96 neeqtrri 10 UnifSet ndx
104 49 103 eqnetri ndx UnifSet ndx
105 62 53 deccl 12 0
106 105 nn0rei 12
107 2lt3 2 < 3
108 62 53 99 107 declt 12 < 13
109 106 108 ltneii 12 13
110 109 96 neeqtrri 12 UnifSet ndx
111 58 110 eqnetri dist ndx UnifSet ndx
112 disjtpsn TopSet ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx TopSet ndx ndx dist ndx UnifSet ndx =
113 98 104 111 112 mp3an TopSet ndx ndx dist ndx UnifSet ndx =
114 92 113 eqtri dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
115 funun Fun TopSet ndx MetOpen abs ndx dist ndx abs Fun UnifSet ndx metUnif abs dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs = Fun TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
116 89 114 115 mp2an Fun TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
117 44 116 pm3.2i Fun Base ndx + ndx + ndx × * ndx * Fun TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
118 dmun dom Base ndx + ndx + ndx × * ndx * = dom Base ndx + ndx + ndx × dom * ndx *
119 dmun dom TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs = dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs
120 118 119 ineq12i dom Base ndx + ndx + ndx × * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs = dom Base ndx + ndx + ndx × dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs
121 18 90 ineq12i dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs = Base ndx + ndx ndx TopSet ndx ndx dist ndx
122 1lt9 1 < 9
123 22 122 ltneii 1 9
124 123 45 neeqtrri 1 TopSet ndx
125 21 124 eqnetri Base ndx TopSet ndx
126 2lt9 2 < 9
127 29 126 ltneii 2 9
128 127 45 neeqtrri 2 TopSet ndx
129 28 128 eqnetri + ndx TopSet ndx
130 3lt9 3 < 9
131 35 130 ltneii 3 9
132 131 45 neeqtrri 3 TopSet ndx
133 34 132 eqnetri ndx TopSet ndx
134 125 129 133 3pm3.2i Base ndx TopSet ndx + ndx TopSet ndx ndx TopSet ndx
135 1lt10 1 < 10
136 22 135 ltneii 1 10
137 136 49 neeqtrri 1 ndx
138 21 137 eqnetri Base ndx ndx
139 2lt10 2 < 10
140 29 139 ltneii 2 10
141 140 49 neeqtrri 2 ndx
142 28 141 eqnetri + ndx ndx
143 3lt10 3 < 10
144 35 143 ltneii 3 10
145 144 49 neeqtrri 3 ndx
146 34 145 eqnetri ndx ndx
147 138 142 146 3pm3.2i Base ndx ndx + ndx ndx ndx ndx
148 22 46 122 ltleii 1 9
149 52 53 62 148 decltdi 1 < 12
150 22 149 ltneii 1 12
151 150 58 neeqtrri 1 dist ndx
152 21 151 eqnetri Base ndx dist ndx
153 29 46 126 ltleii 2 9
154 52 53 53 153 decltdi 2 < 12
155 29 154 ltneii 2 12
156 155 58 neeqtrri 2 dist ndx
157 28 156 eqnetri + ndx dist ndx
158 35 46 130 ltleii 3 9
159 52 53 93 158 decltdi 3 < 12
160 35 159 ltneii 3 12
161 160 58 neeqtrri 3 dist ndx
162 34 161 eqnetri ndx dist ndx
163 152 157 162 3pm3.2i Base ndx dist ndx + ndx dist ndx ndx dist ndx
164 disjtp2 Base ndx TopSet ndx + ndx TopSet ndx ndx TopSet ndx Base ndx ndx + ndx ndx ndx ndx Base ndx dist ndx + ndx dist ndx ndx dist ndx Base ndx + ndx ndx TopSet ndx ndx dist ndx =
165 134 147 163 164 mp3an Base ndx + ndx ndx TopSet ndx ndx dist ndx =
166 121 165 eqtri dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs =
167 18 91 ineq12i dom Base ndx + ndx + ndx × dom UnifSet ndx metUnif abs = Base ndx + ndx ndx UnifSet ndx
168 52 93 62 148 decltdi 1 < 13
169 22 168 ltneii 1 13
170 169 96 neeqtrri 1 UnifSet ndx
171 21 170 eqnetri Base ndx UnifSet ndx
172 52 93 53 153 decltdi 2 < 13
173 29 172 ltneii 2 13
174 173 96 neeqtrri 2 UnifSet ndx
175 28 174 eqnetri + ndx UnifSet ndx
176 52 93 93 158 decltdi 3 < 13
177 35 176 ltneii 3 13
178 177 96 neeqtrri 3 UnifSet ndx
179 34 178 eqnetri ndx UnifSet ndx
180 disjtpsn Base ndx UnifSet ndx + ndx UnifSet ndx ndx UnifSet ndx Base ndx + ndx ndx UnifSet ndx =
181 171 175 179 180 mp3an Base ndx + ndx ndx UnifSet ndx =
182 167 181 eqtri dom Base ndx + ndx + ndx × dom UnifSet ndx metUnif abs =
183 166 182 pm3.2i dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs = dom Base ndx + ndx + ndx × dom UnifSet ndx metUnif abs =
184 undisj2 dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs = dom Base ndx + ndx + ndx × dom UnifSet ndx metUnif abs = dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
185 183 184 mpbi dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
186 19 90 ineq12i dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs = * ndx TopSet ndx ndx dist ndx
187 incom * ndx TopSet ndx ndx dist ndx = TopSet ndx ndx dist ndx * ndx
188 4re 4
189 4lt9 4 < 9
190 188 189 gtneii 9 4
191 190 25 neeqtrri 9 * ndx
192 45 191 eqnetri TopSet ndx * ndx
193 4lt10 4 < 10
194 188 193 gtneii 10 4
195 194 25 neeqtrri 10 * ndx
196 49 195 eqnetri ndx * ndx
197 4nn0 4 0
198 188 46 189 ltleii 4 9
199 52 53 197 198 decltdi 4 < 12
200 188 199 gtneii 12 4
201 200 25 neeqtrri 12 * ndx
202 58 201 eqnetri dist ndx * ndx
203 disjtpsn TopSet ndx * ndx ndx * ndx dist ndx * ndx TopSet ndx ndx dist ndx * ndx =
204 192 196 202 203 mp3an TopSet ndx ndx dist ndx * ndx =
205 187 204 eqtri * ndx TopSet ndx ndx dist ndx =
206 186 205 eqtri dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs =
207 19 91 ineq12i dom * ndx * dom UnifSet ndx metUnif abs = * ndx UnifSet ndx
208 52 93 197 198 decltdi 4 < 13
209 188 208 ltneii 4 13
210 209 96 neeqtrri 4 UnifSet ndx
211 25 210 eqnetri * ndx UnifSet ndx
212 disjsn2 * ndx UnifSet ndx * ndx UnifSet ndx =
213 211 212 ax-mp * ndx UnifSet ndx =
214 207 213 eqtri dom * ndx * dom UnifSet ndx metUnif abs =
215 206 214 pm3.2i dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs = dom * ndx * dom UnifSet ndx metUnif abs =
216 undisj2 dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs = dom * ndx * dom UnifSet ndx metUnif abs = dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
217 215 216 mpbi dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
218 185 217 pm3.2i dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs = dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
219 undisj1 dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs = dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs = dom Base ndx + ndx + ndx × dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
220 218 219 mpbi dom Base ndx + ndx + ndx × dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
221 120 220 eqtri dom Base ndx + ndx + ndx × * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs =
222 funun Fun Base ndx + ndx + ndx × * ndx * Fun TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs dom Base ndx + ndx + ndx × * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs = Fun Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
223 117 221 222 mp2an Fun Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
224 df-cnfld fld = Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
225 224 funeqi Fun fld Fun Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
226 223 225 mpbir Fun fld