Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldstr |
|
2 |
|
structn0fun |
|
3 |
|
fvex |
|
4 |
|
cnex |
|
5 |
3 4
|
opnzi |
|
6 |
5
|
nesymi |
|
7 |
|
fvex |
|
8 |
|
addex |
|
9 |
7 8
|
opnzi |
|
10 |
9
|
nesymi |
|
11 |
|
fvex |
|
12 |
|
mulex |
|
13 |
11 12
|
opnzi |
|
14 |
13
|
nesymi |
|
15 |
|
3ioran |
|
16 |
|
0ex |
|
17 |
16
|
eltp |
|
18 |
15 17
|
xchnxbir |
|
19 |
6 10 14 18
|
mpbir3an |
|
20 |
|
fvex |
|
21 |
|
cjf |
|
22 |
|
fex |
|
23 |
21 4 22
|
mp2an |
|
24 |
20 23
|
opnzi |
|
25 |
24
|
necomi |
|
26 |
|
nelsn |
|
27 |
25 26
|
ax-mp |
|
28 |
19 27
|
pm3.2i |
|
29 |
|
fvex |
|
30 |
|
fvex |
|
31 |
29 30
|
opnzi |
|
32 |
31
|
nesymi |
|
33 |
|
fvex |
|
34 |
|
letsr |
|
35 |
34
|
elexi |
|
36 |
33 35
|
opnzi |
|
37 |
36
|
nesymi |
|
38 |
|
fvex |
|
39 |
|
absf |
|
40 |
|
fex |
|
41 |
39 4 40
|
mp2an |
|
42 |
|
subf |
|
43 |
4 4
|
xpex |
|
44 |
|
fex |
|
45 |
42 43 44
|
mp2an |
|
46 |
41 45
|
coex |
|
47 |
38 46
|
opnzi |
|
48 |
47
|
nesymi |
|
49 |
|
3ioran |
|
50 |
32 37 48 49
|
mpbir3an |
|
51 |
16
|
eltp |
|
52 |
50 51
|
mtbir |
|
53 |
|
fvex |
|
54 |
|
fvex |
|
55 |
53 54
|
opnzi |
|
56 |
55
|
necomi |
|
57 |
|
nelsn |
|
58 |
56 57
|
ax-mp |
|
59 |
52 58
|
pm3.2i |
|
60 |
28 59
|
pm3.2i |
|
61 |
|
ioran |
|
62 |
|
ioran |
|
63 |
|
ioran |
|
64 |
62 63
|
anbi12i |
|
65 |
61 64
|
bitri |
|
66 |
60 65
|
mpbir |
|
67 |
|
df-cnfld |
|
68 |
67
|
eleq2i |
|
69 |
|
elun |
|
70 |
|
elun |
|
71 |
|
elun |
|
72 |
70 71
|
orbi12i |
|
73 |
68 69 72
|
3bitri |
|
74 |
66 73
|
mtbir |
|
75 |
|
disjsn |
|
76 |
74 75
|
mpbir |
|
77 |
|
disjdif2 |
|
78 |
76 77
|
ax-mp |
|
79 |
78
|
funeqi |
|
80 |
2 79
|
sylib |
|
81 |
1 80
|
ax-mp |
|