Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldstr |
|- CCfld Struct <. 1 , ; 1 3 >. |
2 |
|
structn0fun |
|- ( CCfld Struct <. 1 , ; 1 3 >. -> Fun ( CCfld \ { (/) } ) ) |
3 |
|
fvex |
|- ( Base ` ndx ) e. _V |
4 |
|
cnex |
|- CC e. _V |
5 |
3 4
|
opnzi |
|- <. ( Base ` ndx ) , CC >. =/= (/) |
6 |
5
|
nesymi |
|- -. (/) = <. ( Base ` ndx ) , CC >. |
7 |
|
fvex |
|- ( +g ` ndx ) e. _V |
8 |
|
addex |
|- + e. _V |
9 |
7 8
|
opnzi |
|- <. ( +g ` ndx ) , + >. =/= (/) |
10 |
9
|
nesymi |
|- -. (/) = <. ( +g ` ndx ) , + >. |
11 |
|
fvex |
|- ( .r ` ndx ) e. _V |
12 |
|
mulex |
|- x. e. _V |
13 |
11 12
|
opnzi |
|- <. ( .r ` ndx ) , x. >. =/= (/) |
14 |
13
|
nesymi |
|- -. (/) = <. ( .r ` ndx ) , x. >. |
15 |
|
3ioran |
|- ( -. ( (/) = <. ( Base ` ndx ) , CC >. \/ (/) = <. ( +g ` ndx ) , + >. \/ (/) = <. ( .r ` ndx ) , x. >. ) <-> ( -. (/) = <. ( Base ` ndx ) , CC >. /\ -. (/) = <. ( +g ` ndx ) , + >. /\ -. (/) = <. ( .r ` ndx ) , x. >. ) ) |
16 |
|
0ex |
|- (/) e. _V |
17 |
16
|
eltp |
|- ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } <-> ( (/) = <. ( Base ` ndx ) , CC >. \/ (/) = <. ( +g ` ndx ) , + >. \/ (/) = <. ( .r ` ndx ) , x. >. ) ) |
18 |
15 17
|
xchnxbir |
|- ( -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } <-> ( -. (/) = <. ( Base ` ndx ) , CC >. /\ -. (/) = <. ( +g ` ndx ) , + >. /\ -. (/) = <. ( .r ` ndx ) , x. >. ) ) |
19 |
6 10 14 18
|
mpbir3an |
|- -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } |
20 |
|
fvex |
|- ( *r ` ndx ) e. _V |
21 |
|
cjf |
|- * : CC --> CC |
22 |
|
fex |
|- ( ( * : CC --> CC /\ CC e. _V ) -> * e. _V ) |
23 |
21 4 22
|
mp2an |
|- * e. _V |
24 |
20 23
|
opnzi |
|- <. ( *r ` ndx ) , * >. =/= (/) |
25 |
24
|
necomi |
|- (/) =/= <. ( *r ` ndx ) , * >. |
26 |
|
nelsn |
|- ( (/) =/= <. ( *r ` ndx ) , * >. -> -. (/) e. { <. ( *r ` ndx ) , * >. } ) |
27 |
25 26
|
ax-mp |
|- -. (/) e. { <. ( *r ` ndx ) , * >. } |
28 |
19 27
|
pm3.2i |
|- ( -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } /\ -. (/) e. { <. ( *r ` ndx ) , * >. } ) |
29 |
|
fvex |
|- ( TopSet ` ndx ) e. _V |
30 |
|
fvex |
|- ( MetOpen ` ( abs o. - ) ) e. _V |
31 |
29 30
|
opnzi |
|- <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. =/= (/) |
32 |
31
|
nesymi |
|- -. (/) = <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. |
33 |
|
fvex |
|- ( le ` ndx ) e. _V |
34 |
|
letsr |
|- <_ e. TosetRel |
35 |
34
|
elexi |
|- <_ e. _V |
36 |
33 35
|
opnzi |
|- <. ( le ` ndx ) , <_ >. =/= (/) |
37 |
36
|
nesymi |
|- -. (/) = <. ( le ` ndx ) , <_ >. |
38 |
|
fvex |
|- ( dist ` ndx ) e. _V |
39 |
|
absf |
|- abs : CC --> RR |
40 |
|
fex |
|- ( ( abs : CC --> RR /\ CC e. _V ) -> abs e. _V ) |
41 |
39 4 40
|
mp2an |
|- abs e. _V |
42 |
|
subf |
|- - : ( CC X. CC ) --> CC |
43 |
4 4
|
xpex |
|- ( CC X. CC ) e. _V |
44 |
|
fex |
|- ( ( - : ( CC X. CC ) --> CC /\ ( CC X. CC ) e. _V ) -> - e. _V ) |
45 |
42 43 44
|
mp2an |
|- - e. _V |
46 |
41 45
|
coex |
|- ( abs o. - ) e. _V |
47 |
38 46
|
opnzi |
|- <. ( dist ` ndx ) , ( abs o. - ) >. =/= (/) |
48 |
47
|
nesymi |
|- -. (/) = <. ( dist ` ndx ) , ( abs o. - ) >. |
49 |
|
3ioran |
|- ( -. ( (/) = <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. \/ (/) = <. ( le ` ndx ) , <_ >. \/ (/) = <. ( dist ` ndx ) , ( abs o. - ) >. ) <-> ( -. (/) = <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. /\ -. (/) = <. ( le ` ndx ) , <_ >. /\ -. (/) = <. ( dist ` ndx ) , ( abs o. - ) >. ) ) |
50 |
32 37 48 49
|
mpbir3an |
|- -. ( (/) = <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. \/ (/) = <. ( le ` ndx ) , <_ >. \/ (/) = <. ( dist ` ndx ) , ( abs o. - ) >. ) |
51 |
16
|
eltp |
|- ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } <-> ( (/) = <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. \/ (/) = <. ( le ` ndx ) , <_ >. \/ (/) = <. ( dist ` ndx ) , ( abs o. - ) >. ) ) |
52 |
50 51
|
mtbir |
|- -. (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } |
53 |
|
fvex |
|- ( UnifSet ` ndx ) e. _V |
54 |
|
fvex |
|- ( metUnif ` ( abs o. - ) ) e. _V |
55 |
53 54
|
opnzi |
|- <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. =/= (/) |
56 |
55
|
necomi |
|- (/) =/= <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. |
57 |
|
nelsn |
|- ( (/) =/= <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. -> -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
58 |
56 57
|
ax-mp |
|- -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } |
59 |
52 58
|
pm3.2i |
|- ( -. (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
60 |
28 59
|
pm3.2i |
|- ( ( -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } /\ -. (/) e. { <. ( *r ` ndx ) , * >. } ) /\ ( -. (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
61 |
|
ioran |
|- ( -. ( ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) \/ ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) <-> ( -. ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) /\ -. ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
62 |
|
ioran |
|- ( -. ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) <-> ( -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } /\ -. (/) e. { <. ( *r ` ndx ) , * >. } ) ) |
63 |
|
ioran |
|- ( -. ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) <-> ( -. (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
64 |
62 63
|
anbi12i |
|- ( ( -. ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) /\ -. ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) <-> ( ( -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } /\ -. (/) e. { <. ( *r ` ndx ) , * >. } ) /\ ( -. (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
65 |
61 64
|
bitri |
|- ( -. ( ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) \/ ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) <-> ( ( -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } /\ -. (/) e. { <. ( *r ` ndx ) , * >. } ) /\ ( -. (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
66 |
60 65
|
mpbir |
|- -. ( ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) \/ ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
67 |
|
df-cnfld |
|- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
68 |
67
|
eleq2i |
|- ( (/) e. CCfld <-> (/) e. ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
69 |
|
elun |
|- ( (/) e. ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) <-> ( (/) e. ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) \/ (/) e. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
70 |
|
elun |
|- ( (/) e. ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) <-> ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) ) |
71 |
|
elun |
|- ( (/) e. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) <-> ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
72 |
70 71
|
orbi12i |
|- ( ( (/) e. ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) \/ (/) e. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) <-> ( ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) \/ ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
73 |
68 69 72
|
3bitri |
|- ( (/) e. CCfld <-> ( ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) \/ ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
74 |
66 73
|
mtbir |
|- -. (/) e. CCfld |
75 |
|
disjsn |
|- ( ( CCfld i^i { (/) } ) = (/) <-> -. (/) e. CCfld ) |
76 |
74 75
|
mpbir |
|- ( CCfld i^i { (/) } ) = (/) |
77 |
|
disjdif2 |
|- ( ( CCfld i^i { (/) } ) = (/) -> ( CCfld \ { (/) } ) = CCfld ) |
78 |
76 77
|
ax-mp |
|- ( CCfld \ { (/) } ) = CCfld |
79 |
78
|
funeqi |
|- ( Fun ( CCfld \ { (/) } ) <-> Fun CCfld ) |
80 |
2 79
|
sylib |
|- ( CCfld Struct <. 1 , ; 1 3 >. -> Fun CCfld ) |
81 |
1 80
|
ax-mp |
|- Fun CCfld |