Metamath Proof Explorer


Theorem slotsdifplendx

Description: The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfun . (Contributed by AV, 11-Nov-2024)

Ref Expression
Assertion slotsdifplendx
|- ( ( *r ` ndx ) =/= ( le ` ndx ) /\ ( TopSet ` ndx ) =/= ( le ` ndx ) )

Proof

Step Hyp Ref Expression
1 4re
 |-  4 e. RR
2 4lt10
 |-  4 < ; 1 0
3 1 2 ltneii
 |-  4 =/= ; 1 0
4 starvndx
 |-  ( *r ` ndx ) = 4
5 plendx
 |-  ( le ` ndx ) = ; 1 0
6 4 5 neeq12i
 |-  ( ( *r ` ndx ) =/= ( le ` ndx ) <-> 4 =/= ; 1 0 )
7 3 6 mpbir
 |-  ( *r ` ndx ) =/= ( le ` ndx )
8 9re
 |-  9 e. RR
9 9lt10
 |-  9 < ; 1 0
10 8 9 ltneii
 |-  9 =/= ; 1 0
11 tsetndx
 |-  ( TopSet ` ndx ) = 9
12 11 5 neeq12i
 |-  ( ( TopSet ` ndx ) =/= ( le ` ndx ) <-> 9 =/= ; 1 0 )
13 10 12 mpbir
 |-  ( TopSet ` ndx ) =/= ( le ` ndx )
14 7 13 pm3.2i
 |-  ( ( *r ` ndx ) =/= ( le ` ndx ) /\ ( TopSet ` ndx ) =/= ( le ` ndx ) )