Step |
Hyp |
Ref |
Expression |
1 |
|
4re |
⊢ 4 ∈ ℝ |
2 |
|
4lt10 |
⊢ 4 < ; 1 0 |
3 |
1 2
|
ltneii |
⊢ 4 ≠ ; 1 0 |
4 |
|
starvndx |
⊢ ( *𝑟 ‘ ndx ) = 4 |
5 |
|
plendx |
⊢ ( le ‘ ndx ) = ; 1 0 |
6 |
4 5
|
neeq12i |
⊢ ( ( *𝑟 ‘ ndx ) ≠ ( le ‘ ndx ) ↔ 4 ≠ ; 1 0 ) |
7 |
3 6
|
mpbir |
⊢ ( *𝑟 ‘ ndx ) ≠ ( le ‘ ndx ) |
8 |
|
9re |
⊢ 9 ∈ ℝ |
9 |
|
9lt10 |
⊢ 9 < ; 1 0 |
10 |
8 9
|
ltneii |
⊢ 9 ≠ ; 1 0 |
11 |
|
tsetndx |
⊢ ( TopSet ‘ ndx ) = 9 |
12 |
11 5
|
neeq12i |
⊢ ( ( TopSet ‘ ndx ) ≠ ( le ‘ ndx ) ↔ 9 ≠ ; 1 0 ) |
13 |
10 12
|
mpbir |
⊢ ( TopSet ‘ ndx ) ≠ ( le ‘ ndx ) |
14 |
7 13
|
pm3.2i |
⊢ ( ( *𝑟 ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( le ‘ ndx ) ) |