Metamath Proof Explorer


Theorem plendxnmulrndx

Description: The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. Formerly part of proof for opsrmulr . (Contributed by AV, 1-Nov-2024)

Ref Expression
Assertion plendxnmulrndx
|- ( le ` ndx ) =/= ( .r ` ndx )

Proof

Step Hyp Ref Expression
1 3re
 |-  3 e. RR
2 3lt10
 |-  3 < ; 1 0
3 1 2 gtneii
 |-  ; 1 0 =/= 3
4 plendx
 |-  ( le ` ndx ) = ; 1 0
5 mulrndx
 |-  ( .r ` ndx ) = 3
6 4 5 neeq12i
 |-  ( ( le ` ndx ) =/= ( .r ` ndx ) <-> ; 1 0 =/= 3 )
7 3 6 mpbir
 |-  ( le ` ndx ) =/= ( .r ` ndx )