Metamath Proof Explorer


Theorem plendxnmulrndx

Description: The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. Formerly part of proof for opsrmulr . (Contributed by AV, 1-Nov-2024)

Ref Expression
Assertion plendxnmulrndx ( le ‘ ndx ) ≠ ( .r ‘ ndx )

Proof

Step Hyp Ref Expression
1 3re 3 ∈ ℝ
2 3lt10 3 < 1 0
3 1 2 gtneii 1 0 ≠ 3
4 plendx ( le ‘ ndx ) = 1 0
5 mulrndx ( .r ‘ ndx ) = 3
6 4 5 neeq12i ( ( le ‘ ndx ) ≠ ( .r ‘ ndx ) ↔ 1 0 ≠ 3 )
7 3 6 mpbir ( le ‘ ndx ) ≠ ( .r ‘ ndx )