Metamath Proof Explorer


Theorem plendxnscandx

Description: The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. Formerly part of proof for opsrsca . (Contributed by AV, 1-Nov-2024)

Ref Expression
Assertion plendxnscandx ( le ‘ ndx ) ≠ ( Scalar ‘ ndx )

Proof

Step Hyp Ref Expression
1 5re 5 ∈ ℝ
2 5lt10 5 < 1 0
3 1 2 gtneii 1 0 ≠ 5
4 plendx ( le ‘ ndx ) = 1 0
5 scandx ( Scalar ‘ ndx ) = 5
6 4 5 neeq12i ( ( le ‘ ndx ) ≠ ( Scalar ‘ ndx ) ↔ 1 0 ≠ 5 )
7 3 6 mpbir ( le ‘ ndx ) ≠ ( Scalar ‘ ndx )