Metamath Proof Explorer


Theorem 5lt10

Description: 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 5lt10 5 < 1 0

Proof

Step Hyp Ref Expression
1 5lt6 5 < 6
2 6lt10 6 < 1 0
3 5re 5 ∈ ℝ
4 6re 6 ∈ ℝ
5 10re 1 0 ∈ ℝ
6 3 4 5 lttri ( ( 5 < 6 ∧ 6 < 1 0 ) → 5 < 1 0 )
7 1 2 6 mp2an 5 < 1 0