Metamath Proof Explorer


Theorem unifndxntsetndx

Description: The slot for the uniform set is not the slot for the topology in an extensible structure. Formerly part of proof for tuslem . (Contributed by AV, 28-Oct-2024)

Ref Expression
Assertion unifndxntsetndx
|- ( UnifSet ` ndx ) =/= ( TopSet ` ndx )

Proof

Step Hyp Ref Expression
1 9re
 |-  9 e. RR
2 1nn
 |-  1 e. NN
3 3nn0
 |-  3 e. NN0
4 9nn0
 |-  9 e. NN0
5 9lt10
 |-  9 < ; 1 0
6 2 3 4 5 declti
 |-  9 < ; 1 3
7 1 6 gtneii
 |-  ; 1 3 =/= 9
8 unifndx
 |-  ( UnifSet ` ndx ) = ; 1 3
9 tsetndx
 |-  ( TopSet ` ndx ) = 9
10 8 9 neeq12i
 |-  ( ( UnifSet ` ndx ) =/= ( TopSet ` ndx ) <-> ; 1 3 =/= 9 )
11 7 10 mpbir
 |-  ( UnifSet ` ndx ) =/= ( TopSet ` ndx )