Step |
Hyp |
Ref |
Expression |
1 |
|
tuslem.k |
|- K = ( toUnifSp ` U ) |
2 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
3 |
|
tsetndxnbasendx |
|- ( TopSet ` ndx ) =/= ( Base ` ndx ) |
4 |
3
|
necomi |
|- ( Base ` ndx ) =/= ( TopSet ` ndx ) |
5 |
2 4
|
setsnid |
|- ( Base ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) = ( Base ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
6 |
|
ustbas2 |
|- ( U e. ( UnifOn ` X ) -> X = dom U. U ) |
7 |
|
uniexg |
|- ( U e. ( UnifOn ` X ) -> U. U e. _V ) |
8 |
|
dmexg |
|- ( U. U e. _V -> dom U. U e. _V ) |
9 |
|
eqid |
|- { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } = { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } |
10 |
|
basendxltunifndx |
|- ( Base ` ndx ) < ( UnifSet ` ndx ) |
11 |
|
unifndxnn |
|- ( UnifSet ` ndx ) e. NN |
12 |
9 10 11
|
2strbas1 |
|- ( dom U. U e. _V -> dom U. U = ( Base ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) ) |
13 |
7 8 12
|
3syl |
|- ( U e. ( UnifOn ` X ) -> dom U. U = ( Base ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) ) |
14 |
6 13
|
eqtrd |
|- ( U e. ( UnifOn ` X ) -> X = ( Base ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) ) |
15 |
|
tusval |
|- ( U e. ( UnifOn ` X ) -> ( toUnifSp ` U ) = ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
16 |
1 15
|
eqtrid |
|- ( U e. ( UnifOn ` X ) -> K = ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
17 |
16
|
fveq2d |
|- ( U e. ( UnifOn ` X ) -> ( Base ` K ) = ( Base ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) ) |
18 |
5 14 17
|
3eqtr4a |
|- ( U e. ( UnifOn ` X ) -> X = ( Base ` K ) ) |
19 |
|
unifid |
|- UnifSet = Slot ( UnifSet ` ndx ) |
20 |
|
unifndxntsetndx |
|- ( UnifSet ` ndx ) =/= ( TopSet ` ndx ) |
21 |
19 20
|
setsnid |
|- ( UnifSet ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) = ( UnifSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
22 |
9 10 11 19
|
2strop1 |
|- ( U e. ( UnifOn ` X ) -> U = ( UnifSet ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) ) |
23 |
16
|
fveq2d |
|- ( U e. ( UnifOn ` X ) -> ( UnifSet ` K ) = ( UnifSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) ) |
24 |
21 22 23
|
3eqtr4a |
|- ( U e. ( UnifOn ` X ) -> U = ( UnifSet ` K ) ) |
25 |
|
prex |
|- { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } e. _V |
26 |
|
fvex |
|- ( unifTop ` U ) e. _V |
27 |
|
tsetid |
|- TopSet = Slot ( TopSet ` ndx ) |
28 |
27
|
setsid |
|- ( ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } e. _V /\ ( unifTop ` U ) e. _V ) -> ( unifTop ` U ) = ( TopSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) ) |
29 |
25 26 28
|
mp2an |
|- ( unifTop ` U ) = ( TopSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
30 |
16
|
fveq2d |
|- ( U e. ( UnifOn ` X ) -> ( TopSet ` K ) = ( TopSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) ) |
31 |
29 30
|
eqtr4id |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = ( TopSet ` K ) ) |
32 |
|
utopbas |
|- ( U e. ( UnifOn ` X ) -> X = U. ( unifTop ` U ) ) |
33 |
31
|
unieqd |
|- ( U e. ( UnifOn ` X ) -> U. ( unifTop ` U ) = U. ( TopSet ` K ) ) |
34 |
32 18 33
|
3eqtr3rd |
|- ( U e. ( UnifOn ` X ) -> U. ( TopSet ` K ) = ( Base ` K ) ) |
35 |
34
|
oveq2d |
|- ( U e. ( UnifOn ` X ) -> ( ( TopSet ` K ) |`t U. ( TopSet ` K ) ) = ( ( TopSet ` K ) |`t ( Base ` K ) ) ) |
36 |
|
fvex |
|- ( TopSet ` K ) e. _V |
37 |
|
eqid |
|- U. ( TopSet ` K ) = U. ( TopSet ` K ) |
38 |
37
|
restid |
|- ( ( TopSet ` K ) e. _V -> ( ( TopSet ` K ) |`t U. ( TopSet ` K ) ) = ( TopSet ` K ) ) |
39 |
36 38
|
ax-mp |
|- ( ( TopSet ` K ) |`t U. ( TopSet ` K ) ) = ( TopSet ` K ) |
40 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
41 |
|
eqid |
|- ( TopSet ` K ) = ( TopSet ` K ) |
42 |
40 41
|
topnval |
|- ( ( TopSet ` K ) |`t ( Base ` K ) ) = ( TopOpen ` K ) |
43 |
35 39 42
|
3eqtr3g |
|- ( U e. ( UnifOn ` X ) -> ( TopSet ` K ) = ( TopOpen ` K ) ) |
44 |
31 43
|
eqtrd |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = ( TopOpen ` K ) ) |
45 |
18 24 44
|
3jca |
|- ( U e. ( UnifOn ` X ) -> ( X = ( Base ` K ) /\ U = ( UnifSet ` K ) /\ ( unifTop ` U ) = ( TopOpen ` K ) ) ) |