| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tuslem.k |
|- K = ( toUnifSp ` U ) |
| 2 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 3 |
|
1re |
|- 1 e. RR |
| 4 |
|
1lt9 |
|- 1 < 9 |
| 5 |
3 4
|
ltneii |
|- 1 =/= 9 |
| 6 |
|
basendx |
|- ( Base ` ndx ) = 1 |
| 7 |
|
tsetndx |
|- ( TopSet ` ndx ) = 9 |
| 8 |
6 7
|
neeq12i |
|- ( ( Base ` ndx ) =/= ( TopSet ` ndx ) <-> 1 =/= 9 ) |
| 9 |
5 8
|
mpbir |
|- ( Base ` ndx ) =/= ( TopSet ` ndx ) |
| 10 |
2 9
|
setsnid |
|- ( Base ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) = ( Base ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
| 11 |
|
ustbas2 |
|- ( U e. ( UnifOn ` X ) -> X = dom U. U ) |
| 12 |
|
uniexg |
|- ( U e. ( UnifOn ` X ) -> U. U e. _V ) |
| 13 |
|
dmexg |
|- ( U. U e. _V -> dom U. U e. _V ) |
| 14 |
|
eqid |
|- { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } = { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } |
| 15 |
|
df-unif |
|- UnifSet = Slot ; 1 3 |
| 16 |
|
1nn |
|- 1 e. NN |
| 17 |
|
3nn0 |
|- 3 e. NN0 |
| 18 |
|
1nn0 |
|- 1 e. NN0 |
| 19 |
|
1lt10 |
|- 1 < ; 1 0 |
| 20 |
16 17 18 19
|
declti |
|- 1 < ; 1 3 |
| 21 |
|
3nn |
|- 3 e. NN |
| 22 |
18 21
|
decnncl |
|- ; 1 3 e. NN |
| 23 |
14 15 20 22
|
2strbas |
|- ( dom U. U e. _V -> dom U. U = ( Base ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) ) |
| 24 |
12 13 23
|
3syl |
|- ( U e. ( UnifOn ` X ) -> dom U. U = ( Base ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) ) |
| 25 |
11 24
|
eqtrd |
|- ( U e. ( UnifOn ` X ) -> X = ( Base ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) ) |
| 26 |
|
tusval |
|- ( U e. ( UnifOn ` X ) -> ( toUnifSp ` U ) = ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
| 27 |
1 26
|
eqtrid |
|- ( U e. ( UnifOn ` X ) -> K = ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
| 28 |
27
|
fveq2d |
|- ( U e. ( UnifOn ` X ) -> ( Base ` K ) = ( Base ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) ) |
| 29 |
10 25 28
|
3eqtr4a |
|- ( U e. ( UnifOn ` X ) -> X = ( Base ` K ) ) |
| 30 |
|
unifid |
|- UnifSet = Slot ( UnifSet ` ndx ) |
| 31 |
|
9re |
|- 9 e. RR |
| 32 |
|
9nn0 |
|- 9 e. NN0 |
| 33 |
|
9lt10 |
|- 9 < ; 1 0 |
| 34 |
16 17 32 33
|
declti |
|- 9 < ; 1 3 |
| 35 |
31 34
|
gtneii |
|- ; 1 3 =/= 9 |
| 36 |
|
unifndx |
|- ( UnifSet ` ndx ) = ; 1 3 |
| 37 |
36 7
|
neeq12i |
|- ( ( UnifSet ` ndx ) =/= ( TopSet ` ndx ) <-> ; 1 3 =/= 9 ) |
| 38 |
35 37
|
mpbir |
|- ( UnifSet ` ndx ) =/= ( TopSet ` ndx ) |
| 39 |
30 38
|
setsnid |
|- ( UnifSet ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) = ( UnifSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
| 40 |
14 15 20 22
|
2strop |
|- ( U e. ( UnifOn ` X ) -> U = ( UnifSet ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) ) |
| 41 |
27
|
fveq2d |
|- ( U e. ( UnifOn ` X ) -> ( UnifSet ` K ) = ( UnifSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) ) |
| 42 |
39 40 41
|
3eqtr4a |
|- ( U e. ( UnifOn ` X ) -> U = ( UnifSet ` K ) ) |
| 43 |
|
prex |
|- { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } e. _V |
| 44 |
|
fvex |
|- ( unifTop ` U ) e. _V |
| 45 |
|
tsetid |
|- TopSet = Slot ( TopSet ` ndx ) |
| 46 |
45
|
setsid |
|- ( ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } e. _V /\ ( unifTop ` U ) e. _V ) -> ( unifTop ` U ) = ( TopSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) ) |
| 47 |
43 44 46
|
mp2an |
|- ( unifTop ` U ) = ( TopSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
| 48 |
27
|
fveq2d |
|- ( U e. ( UnifOn ` X ) -> ( TopSet ` K ) = ( TopSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) ) |
| 49 |
47 48
|
eqtr4id |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = ( TopSet ` K ) ) |
| 50 |
|
utopbas |
|- ( U e. ( UnifOn ` X ) -> X = U. ( unifTop ` U ) ) |
| 51 |
49
|
unieqd |
|- ( U e. ( UnifOn ` X ) -> U. ( unifTop ` U ) = U. ( TopSet ` K ) ) |
| 52 |
50 29 51
|
3eqtr3rd |
|- ( U e. ( UnifOn ` X ) -> U. ( TopSet ` K ) = ( Base ` K ) ) |
| 53 |
52
|
oveq2d |
|- ( U e. ( UnifOn ` X ) -> ( ( TopSet ` K ) |`t U. ( TopSet ` K ) ) = ( ( TopSet ` K ) |`t ( Base ` K ) ) ) |
| 54 |
|
fvex |
|- ( TopSet ` K ) e. _V |
| 55 |
|
eqid |
|- U. ( TopSet ` K ) = U. ( TopSet ` K ) |
| 56 |
55
|
restid |
|- ( ( TopSet ` K ) e. _V -> ( ( TopSet ` K ) |`t U. ( TopSet ` K ) ) = ( TopSet ` K ) ) |
| 57 |
54 56
|
ax-mp |
|- ( ( TopSet ` K ) |`t U. ( TopSet ` K ) ) = ( TopSet ` K ) |
| 58 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 59 |
|
eqid |
|- ( TopSet ` K ) = ( TopSet ` K ) |
| 60 |
58 59
|
topnval |
|- ( ( TopSet ` K ) |`t ( Base ` K ) ) = ( TopOpen ` K ) |
| 61 |
53 57 60
|
3eqtr3g |
|- ( U e. ( UnifOn ` X ) -> ( TopSet ` K ) = ( TopOpen ` K ) ) |
| 62 |
49 61
|
eqtrd |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = ( TopOpen ` K ) ) |
| 63 |
29 42 62
|
3jca |
|- ( U e. ( UnifOn ` X ) -> ( X = ( Base ` K ) /\ U = ( UnifSet ` K ) /\ ( unifTop ` U ) = ( TopOpen ` K ) ) ) |