| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tuslem.k |
⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) |
| 2 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 3 |
|
1re |
⊢ 1 ∈ ℝ |
| 4 |
|
1lt9 |
⊢ 1 < 9 |
| 5 |
3 4
|
ltneii |
⊢ 1 ≠ 9 |
| 6 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
| 7 |
|
tsetndx |
⊢ ( TopSet ‘ ndx ) = 9 |
| 8 |
6 7
|
neeq12i |
⊢ ( ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx ) ↔ 1 ≠ 9 ) |
| 9 |
5 8
|
mpbir |
⊢ ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
| 10 |
2 9
|
setsnid |
⊢ ( Base ‘ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) |
| 11 |
|
ustbas2 |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = dom ∪ 𝑈 ) |
| 12 |
|
uniexg |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ 𝑈 ∈ V ) |
| 13 |
|
dmexg |
⊢ ( ∪ 𝑈 ∈ V → dom ∪ 𝑈 ∈ V ) |
| 14 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } = { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } |
| 15 |
|
df-unif |
⊢ UnifSet = Slot ; 1 3 |
| 16 |
|
1nn |
⊢ 1 ∈ ℕ |
| 17 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 18 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 19 |
|
1lt10 |
⊢ 1 < ; 1 0 |
| 20 |
16 17 18 19
|
declti |
⊢ 1 < ; 1 3 |
| 21 |
|
3nn |
⊢ 3 ∈ ℕ |
| 22 |
18 21
|
decnncl |
⊢ ; 1 3 ∈ ℕ |
| 23 |
14 15 20 22
|
2strbas |
⊢ ( dom ∪ 𝑈 ∈ V → dom ∪ 𝑈 = ( Base ‘ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) ) |
| 24 |
12 13 23
|
3syl |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → dom ∪ 𝑈 = ( Base ‘ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) ) |
| 25 |
11 24
|
eqtrd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) ) |
| 26 |
|
tusval |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( toUnifSp ‘ 𝑈 ) = ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) |
| 27 |
1 26
|
eqtrid |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐾 = ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( Base ‘ 𝐾 ) = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) ) |
| 29 |
10 25 28
|
3eqtr4a |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 30 |
|
unifid |
⊢ UnifSet = Slot ( UnifSet ‘ ndx ) |
| 31 |
|
9re |
⊢ 9 ∈ ℝ |
| 32 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
| 33 |
|
9lt10 |
⊢ 9 < ; 1 0 |
| 34 |
16 17 32 33
|
declti |
⊢ 9 < ; 1 3 |
| 35 |
31 34
|
gtneii |
⊢ ; 1 3 ≠ 9 |
| 36 |
|
unifndx |
⊢ ( UnifSet ‘ ndx ) = ; 1 3 |
| 37 |
36 7
|
neeq12i |
⊢ ( ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx ) ↔ ; 1 3 ≠ 9 ) |
| 38 |
35 37
|
mpbir |
⊢ ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
| 39 |
30 38
|
setsnid |
⊢ ( UnifSet ‘ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) = ( UnifSet ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) |
| 40 |
14 15 20 22
|
2strop |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSet ‘ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) ) |
| 41 |
27
|
fveq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( UnifSet ‘ 𝐾 ) = ( UnifSet ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) ) |
| 42 |
39 40 41
|
3eqtr4a |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSet ‘ 𝐾 ) ) |
| 43 |
|
prex |
⊢ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ∈ V |
| 44 |
|
fvex |
⊢ ( unifTop ‘ 𝑈 ) ∈ V |
| 45 |
|
tsetid |
⊢ TopSet = Slot ( TopSet ‘ ndx ) |
| 46 |
45
|
setsid |
⊢ ( ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ∈ V ∧ ( unifTop ‘ 𝑈 ) ∈ V ) → ( unifTop ‘ 𝑈 ) = ( TopSet ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) ) |
| 47 |
43 44 46
|
mp2an |
⊢ ( unifTop ‘ 𝑈 ) = ( TopSet ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) |
| 48 |
27
|
fveq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) ) |
| 49 |
47 48
|
eqtr4id |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopSet ‘ 𝐾 ) ) |
| 50 |
|
utopbas |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ∪ ( unifTop ‘ 𝑈 ) ) |
| 51 |
49
|
unieqd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ ( unifTop ‘ 𝑈 ) = ∪ ( TopSet ‘ 𝐾 ) ) |
| 52 |
50 29 51
|
3eqtr3rd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ ( TopSet ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) |
| 53 |
52
|
oveq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( TopSet ‘ 𝐾 ) ↾t ∪ ( TopSet ‘ 𝐾 ) ) = ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) ) |
| 54 |
|
fvex |
⊢ ( TopSet ‘ 𝐾 ) ∈ V |
| 55 |
|
eqid |
⊢ ∪ ( TopSet ‘ 𝐾 ) = ∪ ( TopSet ‘ 𝐾 ) |
| 56 |
55
|
restid |
⊢ ( ( TopSet ‘ 𝐾 ) ∈ V → ( ( TopSet ‘ 𝐾 ) ↾t ∪ ( TopSet ‘ 𝐾 ) ) = ( TopSet ‘ 𝐾 ) ) |
| 57 |
54 56
|
ax-mp |
⊢ ( ( TopSet ‘ 𝐾 ) ↾t ∪ ( TopSet ‘ 𝐾 ) ) = ( TopSet ‘ 𝐾 ) |
| 58 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 59 |
|
eqid |
⊢ ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐾 ) |
| 60 |
58 59
|
topnval |
⊢ ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) = ( TopOpen ‘ 𝐾 ) |
| 61 |
53 57 60
|
3eqtr3g |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopSet ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) ) |
| 62 |
49 61
|
eqtrd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) |
| 63 |
29 42 62
|
3jca |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝑈 = ( UnifSet ‘ 𝐾 ) ∧ ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) ) |