Metamath Proof Explorer


Theorem tustopn

Description: The topology induced by a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Hypotheses tuslem.k 𝐾 = ( toUnifSp ‘ 𝑈 )
tustopn.j 𝐽 = ( unifTop ‘ 𝑈 )
Assertion tustopn ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 tuslem.k 𝐾 = ( toUnifSp ‘ 𝑈 )
2 tustopn.j 𝐽 = ( unifTop ‘ 𝑈 )
3 1 tuslem ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝑈 = ( UnifSet ‘ 𝐾 ) ∧ ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) )
4 3 simp3d ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) )
5 2 4 syl5eq ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) )