Description: The topology induced by a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tuslem.k | ⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) | |
| tustopn.j | ⊢ 𝐽 = ( unifTop ‘ 𝑈 ) | ||
| Assertion | tustopn | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tuslem.k | ⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) | |
| 2 | tustopn.j | ⊢ 𝐽 = ( unifTop ‘ 𝑈 ) | |
| 3 | 1 | tuslem | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝑈 = ( UnifSet ‘ 𝐾 ) ∧ ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) ) |
| 4 | 3 | simp3d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) |
| 5 | 2 4 | eqtrid | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) ) |