Metamath Proof Explorer


Theorem tuslem

Description: Lemma for tusbas , tusunif , and tustopn . (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Hypothesis tuslem.k 𝐾 = ( toUnifSp ‘ 𝑈 )
Assertion tuslem ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝑈 = ( UnifSet ‘ 𝐾 ) ∧ ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) )

Proof

Step Hyp Ref Expression
1 tuslem.k 𝐾 = ( toUnifSp ‘ 𝑈 )
2 baseid Base = Slot ( Base ‘ ndx )
3 1re 1 ∈ ℝ
4 1lt9 1 < 9
5 3 4 ltneii 1 ≠ 9
6 basendx ( Base ‘ ndx ) = 1
7 tsetndx ( TopSet ‘ ndx ) = 9
8 6 7 neeq12i ( ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx ) ↔ 1 ≠ 9 )
9 5 8 mpbir ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx )
10 2 9 setsnid ( Base ‘ { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) ⟩ ) )
11 ustbas2 ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = dom 𝑈 )
12 uniexg ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ∈ V )
13 dmexg ( 𝑈 ∈ V → dom 𝑈 ∈ V )
14 eqid { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } = { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ }
15 df-unif UnifSet = Slot 1 3
16 1nn 1 ∈ ℕ
17 3nn0 3 ∈ ℕ0
18 1nn0 1 ∈ ℕ0
19 1lt10 1 < 1 0
20 16 17 18 19 declti 1 < 1 3
21 3nn 3 ∈ ℕ
22 18 21 decnncl 1 3 ∈ ℕ
23 14 15 20 22 2strbas ( dom 𝑈 ∈ V → dom 𝑈 = ( Base ‘ { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } ) )
24 12 13 23 3syl ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → dom 𝑈 = ( Base ‘ { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } ) )
25 11 24 eqtrd ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } ) )
26 tusval ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( toUnifSp ‘ 𝑈 ) = ( { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) ⟩ ) )
27 1 26 syl5eq ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐾 = ( { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) ⟩ ) )
28 27 fveq2d ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( Base ‘ 𝐾 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) ⟩ ) ) )
29 10 25 28 3eqtr4a ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) )
30 unifid UnifSet = Slot ( UnifSet ‘ ndx )
31 9re 9 ∈ ℝ
32 9nn0 9 ∈ ℕ0
33 9lt10 9 < 1 0
34 16 17 32 33 declti 9 < 1 3
35 31 34 gtneii 1 3 ≠ 9
36 unifndx ( UnifSet ‘ ndx ) = 1 3
37 36 7 neeq12i ( ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx ) ↔ 1 3 ≠ 9 )
38 35 37 mpbir ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx )
39 30 38 setsnid ( UnifSet ‘ { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } ) = ( UnifSet ‘ ( { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) ⟩ ) )
40 14 15 20 22 2strop ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSet ‘ { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } ) )
41 27 fveq2d ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( UnifSet ‘ 𝐾 ) = ( UnifSet ‘ ( { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) ⟩ ) ) )
42 39 40 41 3eqtr4a ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSet ‘ 𝐾 ) )
43 prex { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } ∈ V
44 fvex ( unifTop ‘ 𝑈 ) ∈ V
45 tsetid TopSet = Slot ( TopSet ‘ ndx )
46 45 setsid ( ( { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } ∈ V ∧ ( unifTop ‘ 𝑈 ) ∈ V ) → ( unifTop ‘ 𝑈 ) = ( TopSet ‘ ( { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) ⟩ ) ) )
47 43 44 46 mp2an ( unifTop ‘ 𝑈 ) = ( TopSet ‘ ( { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) ⟩ ) )
48 27 fveq2d ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ ( { ⟨ ( Base ‘ ndx ) , dom 𝑈 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑈 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) ⟩ ) ) )
49 47 48 eqtr4id ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopSet ‘ 𝐾 ) )
50 utopbas ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( unifTop ‘ 𝑈 ) )
51 49 unieqd ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopSet ‘ 𝐾 ) )
52 50 29 51 3eqtr3rd ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopSet ‘ 𝐾 ) = ( Base ‘ 𝐾 ) )
53 52 oveq2d ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( TopSet ‘ 𝐾 ) ↾t ( TopSet ‘ 𝐾 ) ) = ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) )
54 fvex ( TopSet ‘ 𝐾 ) ∈ V
55 eqid ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐾 )
56 55 restid ( ( TopSet ‘ 𝐾 ) ∈ V → ( ( TopSet ‘ 𝐾 ) ↾t ( TopSet ‘ 𝐾 ) ) = ( TopSet ‘ 𝐾 ) )
57 54 56 ax-mp ( ( TopSet ‘ 𝐾 ) ↾t ( TopSet ‘ 𝐾 ) ) = ( TopSet ‘ 𝐾 )
58 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
59 eqid ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐾 )
60 58 59 topnval ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) = ( TopOpen ‘ 𝐾 )
61 53 57 60 3eqtr3g ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopSet ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) )
62 49 61 eqtrd ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) )
63 29 42 62 3jca ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝑈 = ( UnifSet ‘ 𝐾 ) ∧ ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) )